

Wells and Gathering Construction

Phase 2 Soil Assessment

Client: Arrow Energy Pty Ltd

ABN: 73078521936

Prepared by

AECOM Australia Pty Ltd
Level 8, 540 Wickham Street, PO Box 1307, Fortitude Valley QLD 4006, Australia T +61 7 3056 4800 www.aecom.com
ABN 20 093 846 925

22-Jun-2021

Job No.: 60651803

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 and ISO45001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document Wells and Gathering Construction

Ref 60651803

Date 22-Jun-2021

Prepared by Navjot Kaur

Reviewed by Ona Kanas/Simon Muniandy

Revision History

Rev	Revision Date	Details	Authorised	
INCV	revision bate	Details	Name/Position	Signature
A	27-May-2022	Draft	Navjot Kaur Technical Lead - Acid Sulfate Soils	
0	22-Jun-2022	Final,	Navjot Kaur Technical Lead - Acid Sulfate Soils	Thron

Table of Contents

1.0	Introdu	uction	6
	1.1	Objective	6
	1.2	Legislation and Guidelines	6
	1.3	Areas of Regional Interest	6
2.0	Site De	escription	8
	2.1	Proposed Disturbance	8
		2.1.1 Well Pads	8
		2.1.2 Gathering and Pipelines	8 8 9
3.0		1: Desktop Assessment	12
	3.1	Regional Physiography	12
	3.2	Topography	12
	3.3	Surface Geology	12
	3.4	Existing Mapping	16
		3.4.1 Summary	16
4.0		urvey Design	18
	4.1	Free Survey Method	18
	4.2	Sampling Intensity and Scale	18
	4.3	Field Methodology	19
	4.4	Field Program	23
5.0	Soil Ma	apping Units	23
0.0	0 11 01	5.1.1 Well Structured Cracking Clay Soils	26
6.0		sturbance Management Strategies	30
	6.1	Rehabilitation Considerations	30
	6.2	Topsoil Suitability and Management	30
	6.3	Stripping, Stockpiling and Handling	31
	6.4	Topsoil Reuse	31
	G E	6.4.1 Compaction Strategies	31
	6.5	Soil Erosion	32
7.0	6.6	Construction Inspection and Maintenance Regimes	32
7.0	Conclu		33
8.0 9.0	Refere Limitat		34 35
9.0	Liiiilai	110115	30
Append	ix A		
	Soil Lo	ogging Sheets	A
Append	iv R		
Аррспа		ical Tables	В
	-	icai Tabics	
Append			
	Labora	atory Reports	C
List of 7	Tables		
Table 1		Project disturbance area	8
Table 2		Summary of the Project soil units and LRA	16
Table 3		Sampling intensity compliance	19
Table 4		Sampling locations and mapped soil	19
Table 5		Field methodology	19
Table 6		Summary of works completed	23
Table 7		Identified SMU	24
Table 8		SMU soil landscape summary	26
Table 9	_	SMU soil profile morphology summary	27
Table 10	J	SMU soil chemistry results for DS01	28

List of Figures

Figure 1	Project Site Location	11
Figure 2	Regional Physiography- Central Lowlands Province	13
Figure 3	Slope Class and Slope Range (%)	14
Figure 4	Surface Geology	15
Figure 5	Existing Mapping	17
Figure 6	Survey locations	22
Figure 7	Soil Management Units	25

1.0 Introduction

AECOM Australia Pty Ltd (AECOM) was appointed by Arrow Energy Pty Ltd (Arrow) to undertake a Phase 2 soil survey for the proposed development of new wells and gathering infrastructure (herein referred to as the 'Project'). The Phase 2 soil survey has been undertaken to validate existing soils mapping, which will be used to support Arrow's future applications under the *Regional Planning Interests Act 2014* (RPI Act). The Phase 2 soil survey will inform the preparation of the separate Land Suitability Assessment, to be submitted as part of the Regional Interests Development Approval (RIDA) application.

The proposed Project is located approximately 15 km south-west of Dalby along the Moonie Highway, shown in **Figure 1**. Further details of the Project, including construction methodology specifics and proposed soil disturbance areas are provided in **Section 2.1**.

1.1 Objective

The primary objective of the Phase 2 soil survey was to ground truth the existing mapped soil boundaries identified during the Phase 1 Desktop Assessment (AECOM, 2021a).

Specific objectives of the Phase 2 soil survey include:

- Assess soil type and land use along the alignment.
- Infer key potential constraints including soil degradation, loss of productivity and subsidence related to the identified soil types.
- Provide management strategies to help mitigate identified potential soil constraints during construction.

1.2 Legislation and Guidelines

This Phase 2 soil survey has been prepared with consideration of the following documents:

- RPI Act, Statutory Guideline 02/14, Carrying out resource activities in a Priority Agricultural Area (DSDMIP, 2019a).
- RPI Act, Statutory Guideline 03/14, Carrying out resource activities in a Strategic Cropping Area (DSDMIP, 2019b).
- Environmental Authority, EPPG00972513, dated 14 January 2021.
- Arrow Land Disturbance Procedures (ORG-ARW-HSM-PRO-00146).
- Guidelines for Soil Survey along Linear Features (Soil Science Australia [SSA], 2015).
- Australian Soil and Land Survey Handbook Series, in particular:
 - Australian Soil and Land Survey Field Handbook (The National Committee on Soil and Terrain, [NCST, 2009]).
 - Guidelines for Surveying Soil and Land Resources (Mckenzie et al., 2008).
 - Soil Chemical Methods Australasia (Rayment and Lyons, 2011).
 - The Australian Soil Classification (Isbell & NCST, 2009).

1.3 Areas of Regional Interest

The RPI Act is administered by the Department of Infrastructure, Local Government and Planning (DILGP) and identifies four Areas of Regional Interest (ARIs): Priority Agricultural Area (PAA); Priority Living Area (PLA); Strategic Cropping Area (SCA); and Strategic Environmental Area (SEA).

Where a resource or regulated activity intersects one or more ARIs and is not exempt from the provisions of the RPI Act, a RIDA is required.

The Project area (the resource activity) intersects PAA and SCA as presented in Figure 1. \\na.aecomnet.com\\lfs\APAC\Brisbane-AUBNE1\Secure\Projects\606X\60651803\500_Deliverables\509_Deleverable_WWG Phase 2 Report\Final\60651803_Warakirri Wells and Gathering_Phase 2 Soil Assessment_Final to issue.docx Revision 0 – 22-Jun-2021

- PAA: an area which includes one or more areas used for a priority agricultural land use (PALU), identified in the relevant regional plan. PALUs may include certain types of agriculture, plantations, and/or intensive horticulture. In the case of the Project, the PALUs are identified in the Darling Downs Regional Plan as presented in in Figure 1.
- <u>SCA</u>: defined as an area mapped as potential Strategic Cropping Land (SCL) on the Department of Natural Resources, Mines and Energy (DNRME) Trigger Map. The SCL has been inferred by DNRME to be likely to be highly suitable for cropping due to a combination of the soil, climate, and landscape features.

Validation, impact assessment and mitigation strategies for working in both the PALU and SCA will be required as part of the Project approvals.

2.0 Site Description

The impacted land parcels and approximate disturbance areas for the proposed Gas field development are summarised in **Table 1.** The linear disturbance is approximately 13.6 km across these lots:

Table 1 Project disturbance area

	Whole/Part	Area of Surface	Disturbance (Ha)	
Land parcel		PAA	SCA	Parcel Size (Ha)
2RP85916	Part	1.54	1.54	46.58
12SP193328	Part	1.93	1.93	66.23
57SP193329	Part	4.71	4.71	306.20
36DY45	Part	2.66	2.66	89.02
1RL2451	Part	0.00	0.00	12.62
1DY931	Part	3.74	3.74	241.04
70DY138	Part	3.68	3.68	258.86
1RP154777	Part	0.11	0.11	245.70
1DY787	Part	6.77	6.77	266.40
60DY802	Part	2.14	2.14	129.18
2RP106958	Part	0.83	0.83	127.99
2RP99387	Part	3.07	3.07	202.82
2DY787	Part	4.66	4.66	132.64
To	Totals		35.83 ha	2125.28 ha

A discussion of the proposed disturbance footprints is included in **Sections 2.1.1** and **2.1.2**.

2.1 Proposed Disturbance

The two main components of the Project are the well pads and the associated gathering pipelines and other supporting infrastructure. A generalised disturbance overview of these components is given below.

2.1.1 Well Pads

In general, the sizes of the well pads can be managed so that the maximum level of overall disturbance is consistent with the existing Environmental Authority (EA) intensity of impact (1 ha per well for a single well pad to 0.3 ha per well for up to eight well pads).

The size of well pads is determined by several factors, including:

- the number of wells
- the type of wells
- the type and manoeuvrability of drill rigs
- the terrain which determines whether cut and fill earthworks are required
- whether the area is cleared or supports vegetation
- the existing land use
- the equipment stored temporarily on the pad
- the area required for offices, light vehicle parking, equipment and supplies deliveries

 the required separation distance between wells and the area required to complete drilling operations safely.

In some cases, additional area may be required for areas with higher slope, heavy vegetation and/or to provide sufficient room for cut and fill earthworks batters, diversion drainage and additional erosion and sediment controls. The total disturbance area is approximately 1 ha for single well pads, 1.15 ha (2-well pad), 1.3 ha (3-well pad and 1.45 ha for 4-well multi-well pad).

Well locations will be determined following consultation with the landholder to manage impacts to their operations and land use. As such, well sites are located in areas that reduce impact on farming where possible, such as:

- on the fringes of Intensively Farmed Land (IFL)
- in corners of paddocks
- or areas of land unsuitable for farming
- on or near access tracks, easements and road reserves
- within designated Right of Ways (ROW).

Key steps in well pad construction include:

- Clearing of the area (vegetation may have already been cleared by agricultural activities), including stripping and stockpiling of topsoil. To minimise disturbance at some well pads, under some circumstances, the topsoil will be left in place.
- Laying and levelling the well pad foundations to provide a stable platform for the drilling rig.
- Carrying out site preparation works using earthmoving equipment such as graders, excavators and bulldozers. Where the subgrade material is deemed to be inadequate and unsuitable for heavy vehicle access or where all weather access is required, consideration shall be given to:
 - Amendment of soil (using additives and / or dynamic compaction); or
 - Use of technologies (rig mats, tracked vehicles, roll-out sheets, etc.); or
 - Clear, grub and remove unsuitable material and replace with more suitable material such as gravel.

For this Project, a total of five well pads are being proposed, including one minimal disturbance well pad.

2.1.2 Gathering and Pipelines

The main disturbance area will be a common easement, containing water/gas pipelines and fibre optic/power cables within an approximately 30 m wide ROW for gathering on these properties. (**Plate 1**).

Conventional trenching for pipeline installation involves an open trench between 1-2 m wide and approximately 2.0 m deep to install, inspect or maintain piping, conduits or cables. After installation, the trench is backfilled with the original material and the surface is restored.

Where the pipelines are required to be installed below existing roads or infrastructure, other trenchless technologies such as thrustbore may be used.

The key steps in the pipeline construction are given below:

- Detailed survey of the ROW and construction areas.
- Establishing temporary access tracks if necessary.
- Installing temporary gates and fences as required.
- Clearing vegetation, where required, and grading the ROW to prepare a safe construction working area (on average the ROW will be 30 m in width).
- Separating and stockpiling topsoil and subsoil to protect and preserve topsoil.

- Crossing watercourses, roads and existing buried pipelines by open cut, boring or alternate trenchless technology (e.g. Horizontal Directional Drilling [HDD] methods) depending upon the type and nature of the crossing.
- Delivering pipe sections along the ROW.
- Welding the low-pressure high-density polyethylene (HDPE) pipe sections together to form 'a string'.
- Creating a trench in which to lay the pipeline. The trench is excavated by a trenching machine and may include the use of rock saws, excavators, rock hammers or blasting in hard rock terrain.
- Lowering the pipeline strings into the trench and placing padding (e.g. screened trench subsoil) around the pipe to protect the pipe from external damage.
- Returning the subsoil and topsoil to their original horizons.
- Testing the integrity of the pipeline by pneumatic testing or filling it with water and pressurising it to above the maximum allowable operating pressure (i.e. hydrostatic pressure testing).
- Cleaning up, restoring and progressively rehabilitating the construction ROW and all temporary and permanent tracks, gates and fences.

Installation of multiple pipelines in a single ROW is sequential. The first pipeline is installed, and the trench backfilled before the next pipeline installation commences.

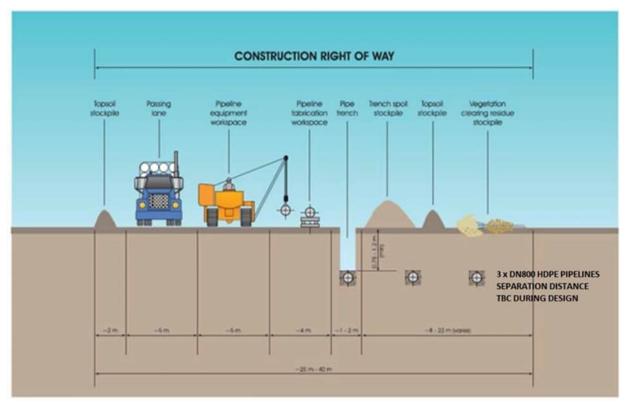
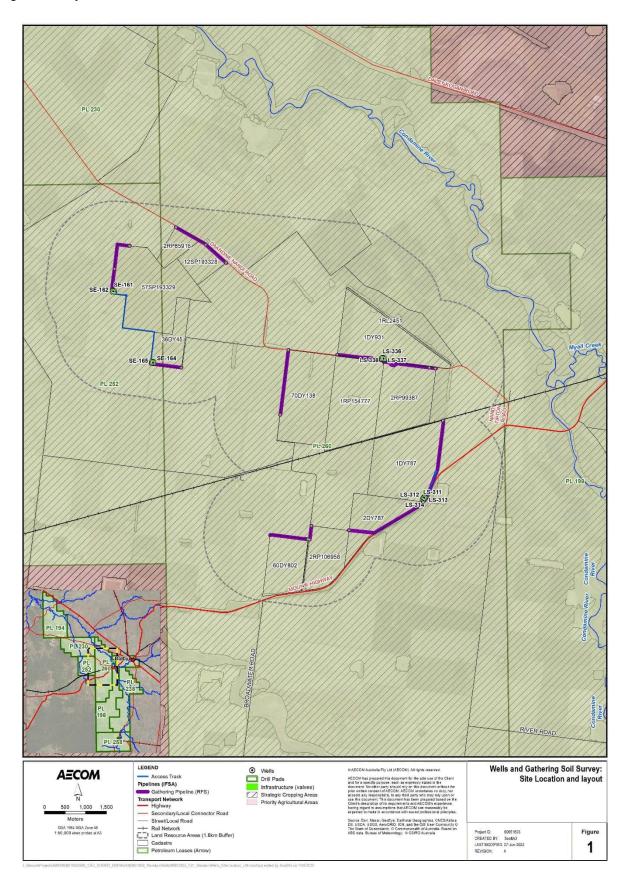



Plate 1 Typical Pipeline ROW Layout

Figure 1 Project Site Location

3.0 Phase 1: Desktop Assessment

3.1 Regional Physiography

The Project area is located wholly within the Condamine Central Lowlands physiographic region (**Figure 2**). The region is described as a low-lying area of undulating siltstone hills with alluvial sediments on the floodplains of the Condamine River and highly weather bedrock on the slopes (CSIRO, 2011).

3.2 Topography

Regionally, there is a north-south topographic high of the Taroom Hills and an east-west topographic high of the Great Dividing Range. Two major drainage systems separate these topographic highs: the Condamine River and Wilkie Creek, both draining towards the north-west (**Figure 1**).

The surface elevation across the Project area is relatively flat at 330 m Australian Height Datum (mAHD), which is consistent with the area being located on the Condamine Lowlands and floodplains of the Condamine River (**Figure 2**) (State of Queensland, 2021).

The digital elevation model (DEM) for the Project area is presented in **Figure 3**¹, and was used to calculate the slope of the surrounding landscape. Based on the calculations, the slope within majority of the Project area range from near level (<1%) to 3%.

3.3 Surface Geology

Based on the Queensland detailed surface geology (presented in **Figure 4**) the Project area is a part of the extensive Surat and Clarence Moreton Basins, including a sequency of sedimentary rocks (Kumbarilla Beds [JKk] and Springbok Sandstone [Jis]) overlain by surficial Cenozoic sediments (undifferentiated alluvium and the Condamine Alluvium) (DNRME, 2018). These alluvium units are described as unconsolidated [Qs], poorly consolidated [TQ] and semi-consolidated [Qa] sediments typically comprised of sand, silt and clay (DNRME, 2019).

Shallow soils likely to be disturbed in the Project area are expected to be dominated by the Condamine Alluvium, which is an extensive accumulation of Tertiary to Quaternary age alluvial sediments, forming a broad (greater than 20 km wide) alluvial plain, extending from Millmerran to Chinchilla. The thickness ranges from less than 10 m to more than 120 m in the floodplain near Dalby (DNRME, 2019). The sediments are dominated by coarse grained gravels and sands, interbedded with clays. The coarse-grained alluvium is associated with higher transmissibility and are the primary source of groundwater.

¹ The DEM for the Project area was sourced from the 1 second Shuttle Radar Topographic Mission (SRTM) DEM-S (smoothed) v1.0 (Geoscience Australia, 2021).

Figure 2 Regional Physiography- Central Lowlands Province

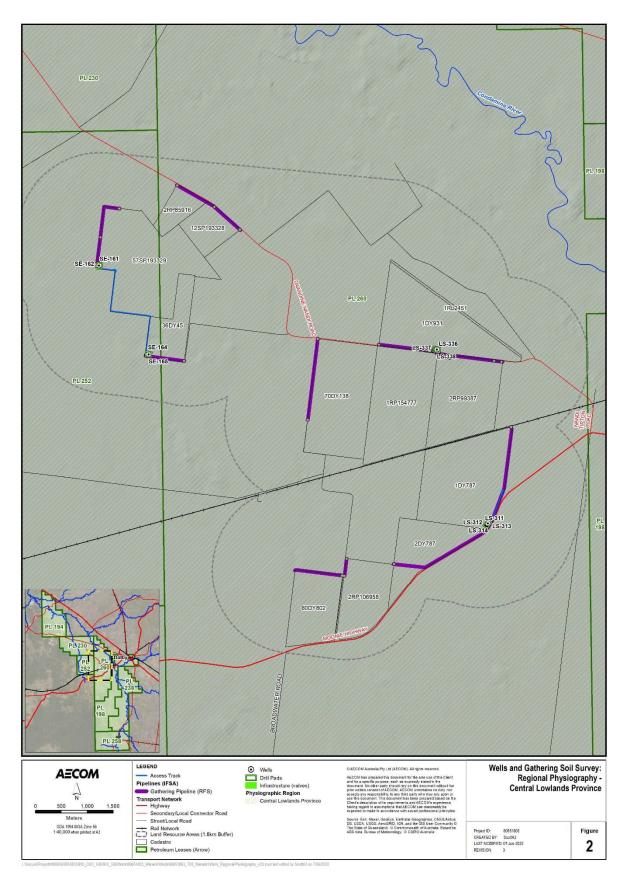


Figure 3 Slope Class and Slope Range (%)

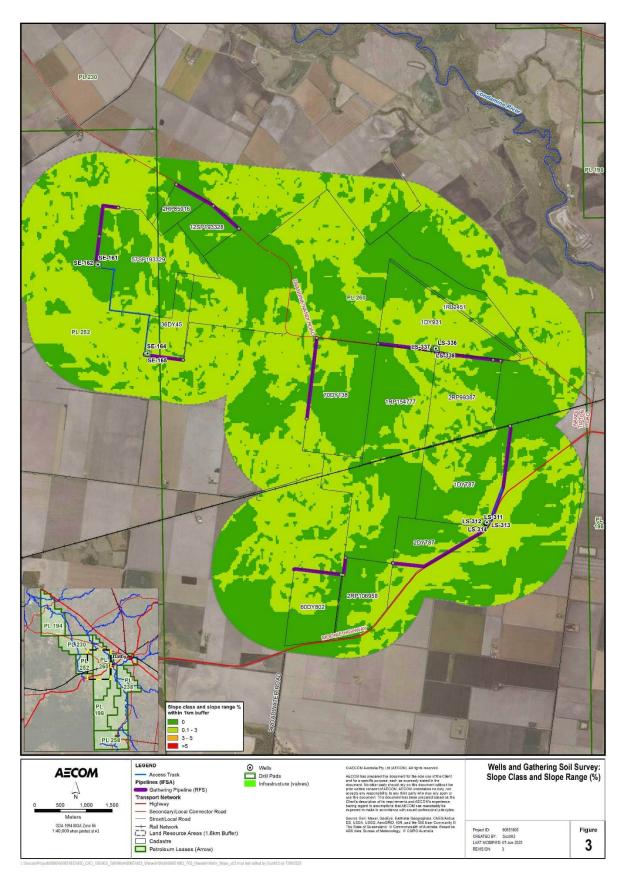
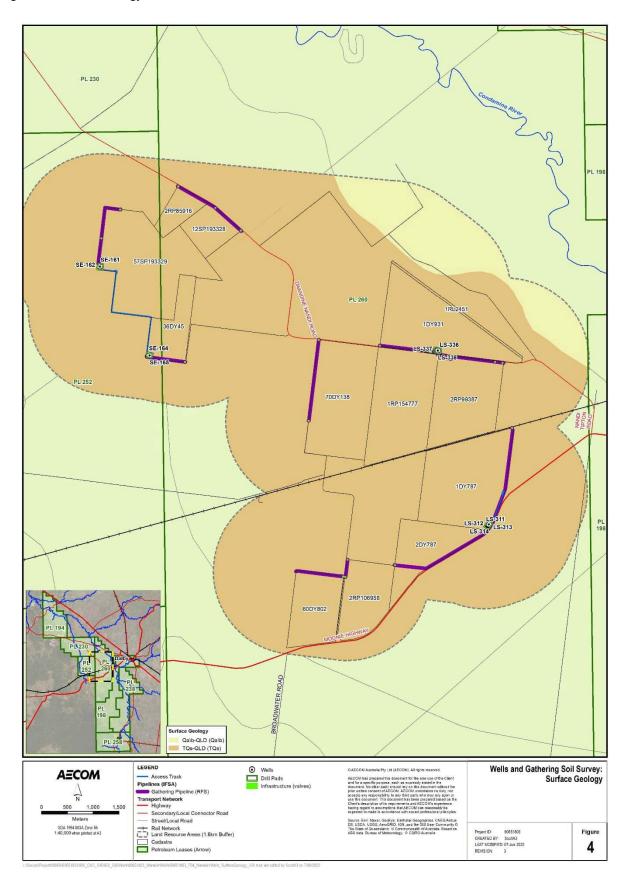



Figure 4 Surface Geology

3.4 Existing Mapping

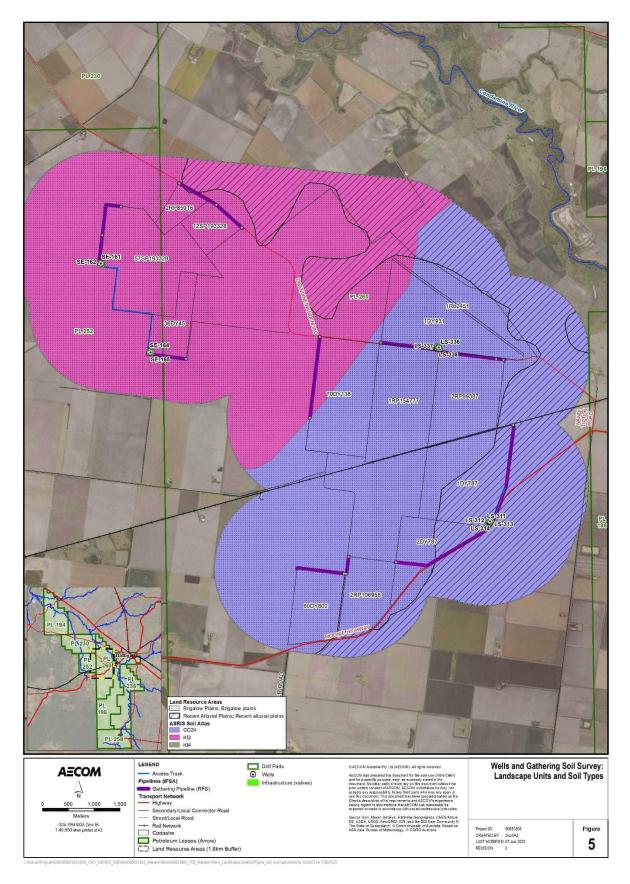
Based on a review of available mapping for the region from the Australian Soil Resource Information System (ASRIS): Atlas of Australia Soil (ASRIS, 2011) and Central Darling Downs Land Management Manual (Harris *et al.*, 1999), the Phase 1 Desktop Assessment (AECOM, 2021a) identified a total of two soil landscape units (SLU) and land resource areas (LRA) likely to be intersected by the Project.

The land resource areas and soil landscape units are summarised in **Table 2**, and presented in **Figure 5**.

Maps at these scales are recommended to be used to gain an overview of land resources, and as a general prediction of land resources (Mckenzie *et al.*, 2008). Therefore, to refine and ground-truth mapped soils along the Project area and aid in the development of suitable control measures, a Phase 2 soil survey was undertaken along the alignment.

3.4.1 Summary

A summary of identified LRA within the Central Darling Downs Land Management Manual (Harris *et al.*, 1999, map scale 1:250,000), cross-referenced with the Atlas (map scale 1:2,000,000) soil landscape units and associated ASC soil classification is presented in **Table 2**.


Table 2 Summary	of the Project soil units and LR	Α
-----------------	----------------------------------	---

LRA (Harris et al)	Soil landscape units (ASRIS)	Dominant ASC	Land parcels	Approximate disturbance area (ha)	% of total Project area
Recent alluvial	CC24	Vertosol	Lot 1 of DY787	6.77	19%
plains (1a)	Kf3	Vertosol	-	0	0%
Brigalow plains (5a/5b)	CC24	Vertosol	Lot1 of DY787 Lot 2 of DY787 Lot 1 of DY931 Lot 1 of RP154777 Lot 2 of RP99387 Lot 60 of DY802 Lot 70 of DY138	18.22	51%
	Kf3	Vertosol	Lot 2 of RP85916 Lot12 of SP193328 Lot 57 of SP193329 Lot 36 of DY45	10.84	30%

Based on the available Atlas and LRA mapping, the soils within the Project are expected to be dominated by self-mulching cracking clays/Vertosols of alluvial origins. Harris *et al.*, 1999 identified three soils types (including: Kupunn, Mywybilla and Anchorfield) which aligned with the common soils listed in the Central Darling Downs Land Management Manual. These soils are described as self-mulching, well-structured cracking clays (such as Vertosols) on the brigalow clay sheet or alluvial plains of mixed origin. These soils are typically good quality, have high fertility and highly valued as agricultural soils. These soils are distributed throughout both LRAs and are likely present within the Project area.

Both mapped LRAs are similar from a management sense and are described as having alkaline upper subsoils (pH 8.0 to 9.0). The soils are also expected to be sodic or strongly sodic and have medium to very high levels of salinity in the subsoil. Levels of sodicity and salinity are generally expected to be lower in surface soils, increasing with depths in the soil profile.

Figure 5 Existing Mapping

4.0 Soil Survey Design

4.1 Free Survey Method

The methodology adopted for the Phase 2 soil survey was based on a free survey approach, a conventional form of soil survey where the intensity and placement of sampling sites can vary with the complexity of the landscape (Mckenzie *et al.*, 2008).

This form of survey is suitable for soil landscapes where there is significant existing knowledge, data and baseline understanding of the stratigraphy. Free surveys are appropriate for map scales from 1:25,000 to 1:100,000 or smaller (SSA, 2015).

4.2 Sampling Intensity and Scale

The sampling intensity and frequency was selected for the Phase 2 soil survey was based on the following guidelines for spatial and linear infrastructure:

- Guidelines for Soil Survey along Linear Features (SSA, 2015).
- Guidelines for Surveying Soil and Land Resources (Mckenzie et al., 2008).
- Queensland Land Resources Assessment Guidelines, Volume 1: Soil and Land Resource Assessment (Department of Environment and Science (DES) and Department of Resources [DOR], June 2021).
- Queensland Land Resources Assessment Guidelines, Volume 2: Field Tests, October 2020
 Department of Environment and Science (DES) and Department of Natural Resources, Mines and Energy (DNRME).

A risk-based approach was adapted for selecting sample locations as follows:

- As per the guidelines, the Project was considered as disturbance in non-urban areas with significant distance from (>500 m) sensitive receivers.
- The desktop assessment indicated presence of uniform landscapes and topography (almost flat with slope <3%) across the Project area, (**Section 3.2**).
- The desktop assessment indicated presence of a flat, uniform landscape with a single soil type (Vertosols) across the Project area.
- The entire Project is within cropping paddocks and/or cleared grazing land with previous knowledge of soil types.
- There was limited access to the cropped paddocks due to restrictions from private landholders and/or due to wet weather conditions.

In accordance with SSA, 2015 guidelines (Table 1 and Table 2), a total of 14 sampling locations/sites were proposed along the linear disturbance area of the Project of approximately 14 km and the project ROW width of 50 m, corresponding approximately to a medium intensity and 1:50,000 scale. For a spatial disturbance of 36 ha, the recommended sampling intensity is eight observations per sites (corresponding to a 1:25,000 scale).

A Sampling Analysis and Quality Plan (AECOM, 2021b) was prepared, including the different types of observations as:

- <u>Detailed sites</u>: Seven detailed soil profile descriptions to 2.0 m (equal to the proposed excavation depth of the alignment) of all soil types intersected by the alignment.
 - Representative sites: three detailed sites (subset) selected for laboratory analysis.
- <u>Surface (less detailed) sites</u>: Four surface sites to a sufficient depth (0.3 m) to identify soil type and correlate to soils already described in the area.

• <u>Check sites</u>: Three check sites to confirm surface features (such as, colour, texture, cracking) in large uniform areas and to establish map unit boundaries.

The chosen site intensity complied with the adopted guidelines (SSA, 2015), as summarised in Table 3.

Table 3 Sampling intensity compliance

Itam	Recommendation		Actual	Oli	
Item	%	Number	sites	Compliance	
Detailed sites	25-50%	4-7	7	Yes	
Representative sites	5-10%	2	3	Yes	
Surface sites	20-50%	3-7	4	Yes	
Check sites	Up to 20%	3	3	Yes	
Total number of sites	100%	14	14	Yes	

The sample sites and targeted mapped soil type (as per desktop assessment) are summarised in **Table 4**.

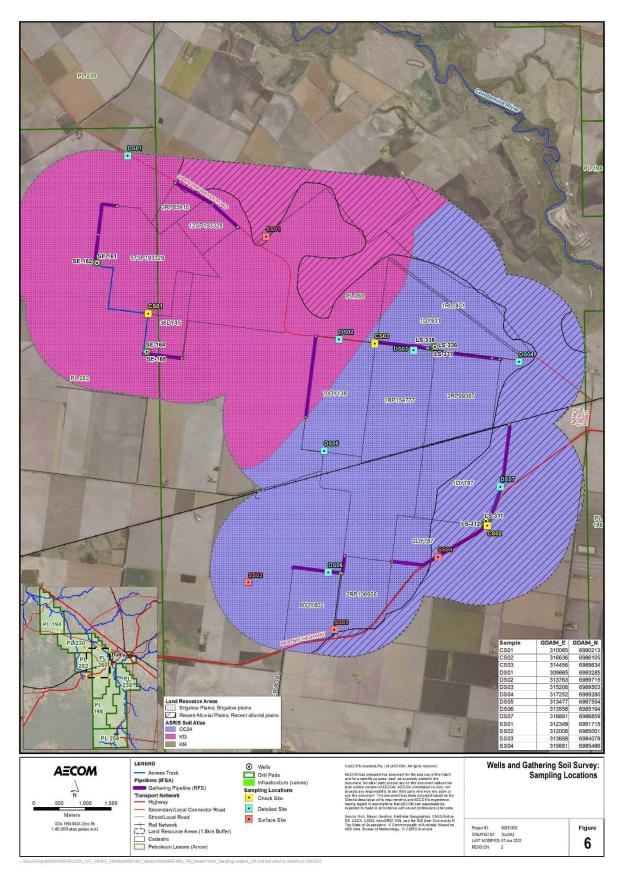
Table 4 Sampling locations and mapped soil

		Mapped	Sampling locations		
LRA	Mapped ASC	Project length (km)	Detailed site	Surface site	Check site
Recent alluvial plains (1a)	CC24 (Vertosol)	3	DS07	SS04, SS03	CS02
Brigalow plains	CC24 (Vertosol)	5	DS03, DS04, DS05, DS06	SS02	CS03
(5a/5b)	Kf3 (Vertosol)	6	DS01 , DS02	SS01,	CS01
	Total	14	7	4	3

Note: sites in **bold** were also as selected for laboratory analysis as representative sites. Additional laboratory analysis was undertaken on all surface sites

4.3 Field Methodology

The field methodology adopted by AECOM for the soil survey is based on Mackenzie (2008) and is summarised in **Table 5**.


Table 5 Field methodology

Activity	Methodology
Site selection	 Sites were predetermined based on existing soil mapping identified during Phase 1 (AECOM, 2021a) to target all identified soil types and landscape features. A predetermined approach was necessary in order to obtain the relevant permits for land access. In the field, site locations were preferentially located within the ROW; however, a number of sites were off set from the actual Project disturbance due to limited assess (land access), vehicle restrictions (boggy conditions), or to confirm soil mapping unit boundaries. The coordinates of each site were recorded using a global positioning system (GPS) with an accuracy of ±3-5 m.
Soil logging	 All soils were described in accordance with the Australian Soil and Land Survey Field Handbook (NCST, 2009), classified according to The Australian Soil Classification (Isbell & NCST, 2009) with soil colour recorded as per Munsell Soil Colour Charts (2009).

Activity	Methodology
	 Site morphological (surface) features (such as, slope, rockiness, gilgai microrelief, landform, major vegetation, and disturbance) were determined in the field through observations, descriptions, and interpretation, in accordance with NCST 2009. Soil physical properties (such as permeability and drainage) were inferred from the identification of concretions, depth to rock, observed plant rooting depth, colour and presence of mottling in each soil.
Detailed sites	 The detailed sites were advanced as follows Seven detailed sites (DS01 to DS07) were advanced by Arrow contractor DIH Contracting Pty Ltd with a 4WD mounted drill rig equipped with an auger attachment from surface to 2.0 mbgl. The use of push-tubes and hand auger is a suitable method for sampling in accordance with the <i>Guidelines for Surveying Soil and Land Resources</i> (Mckenzie <i>et al.</i>, 2008). The ability of auguring to indicate lateral changes in soils is also noted to be a limiting factor of this technique as compared to advancing test pits. Sample locations were backfilled with cuttings or surrounding topsoil. The data collected at detailed sites (as per NCST 2009) included Current land use Farming practice e.g. cropped or vacant, type of crop at the time of survey Landform (slope, visual observations only) Horizon depth Surface characteristics (boundary distinctions, rockiness, Gilgai etc) Surface horizon characteristics Any impacts to soil (evidence of sheet, gully erosion etc) Vegetation stress (thickness of vegetation, groundcover, weeds etc). Field pH and Electrical Conductivity (EC) were recorded for all the depths for the detailed sites using 1:5 aqueous method using deionised water and a field pH and EC probe.
Representative sites	 Soil samples were collected directly from the drill auger attachment. All samples were transferred into laboratory supplied sample containers and held in chilled conditions pending and during transport to the analytical laboratories under chain-of-custody protocols. Sample depth intervals generally included: 0-0.0.1 m, 0.2-0.3 m, 0.5-0.6 m, 0.8-0.9 m, 1.1-1.2 m, 1.5-1.6 m and 1.9-2.0 m. Care was taken to not sample across horizonal boundaries. Sample locations were backfilled with cuttings or surrounding topsoil.
Surface sites	 Each surface site was advanced using hand tools to 0.3 m. This depth was considered sufficient to identify the soil type and correlate to soils already described in the area. The data collected at surface sites (as per NCST, 2008) included Current land use Farming practice e.g. cropped or vacant, type of crop at the time of survey Landform (slope, visual observations only) Horizon depth (A horizon only) Surface characteristics (boundary distinctions, rockiness, Gilgai etc) Surface horizon characteristics Any impacts to soil (evidence of sheet, gully erosion etc) Vegetation stress (thickness of vegetation, groundcover, weeds etc). A composite sample (0.0-0.3 m) was collected for laboratory analysis from the exposed soil face using a clean pair of disposable nitrile gloves. All samples were transferred into laboratory supplied sample containers and held in chilled conditions pending and during transport to the analytical laboratories under chain-of-custody protocols.
Check sites	 Each check site involved recording of surface features (such as colour, texture, cracking) to establish map boundaries. Minimum data included location, landform, vegetation, surface and horizon characterises, and correlated/classified soil type.

Activity	Methodology
	No soil samples were collected from check sites.
Laboratory analysis	 All samples were submitted to Australian Laboratory Services Pty Ltd (ALS) a National Association of Authorities (NATA) accredited for laboratory analytical methods for the tests required. Testing was conducted in accordance with chemical methods outlined in Rayment and Lyons (2011) The laboratory analytical schedule (for) included as following: All topsoil samples and (including representative sites and surface sites) Particle size analysis (PSA) All topsoil and select subsoil samples (including representative sites and surface sites) pH 1:5, electrical conductivity (EC) 1:5 Cation Exchange Capacity (CEC), exchangeable cations (calcium, potassium, magnesium and sodium) and Exchangeable Sodium Percentage (ESP). Soluble major ions (Na, Ca, Mg, K], and chloride, sulfate (SO₄), carbonate, bicarbonate and total alkalinity. Clay content and Emerson aggregate test. Organic carbon, total nitrogen (Total Kjeldahl Nitrogen [organic nitrogen plus ammonia] and organic nitrogen) and available phosphorus. Micro-nutrients (boron [B] copper [Cu], iron [Fe], manganese [Mn], zinc [Zn]) extractable metals. Moisture content (including at field capacity and wilting point). Phosphorus buffering index.
Soil Criteria Guidelines	An explanation of the guidelines used for the interpretation of the laboratory data presented are summarised in Appendix B .

Figure 6 Survey locations

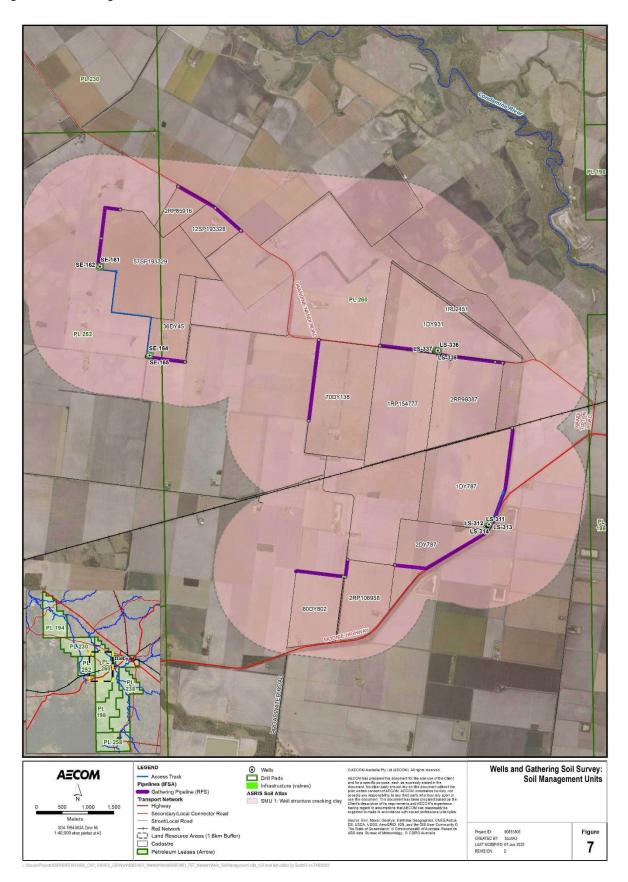
4.4 Field Program

The soil survey was completed between 22 and 24 March 2022 in general accordance with the SAQP (AECOM, 2021b). The soil survey design initially proposed in the SAQP (AECOM, 2021b) was altered slightly due to adverse weather conditions and access constraints, with a summary of completed works and change documented in **Table 6**. Actual survey locations are shown on **Figure 6**.

Table 6 Summary of works completed

Activity Date		Date	Comment
Property access		21 March 2022	 Access to private landholder properties was arranged by Arrow, with Conduct and Compensation Agreements (CCA), Entry Notices and weed and seed requirements in place prior to the commencement of the soil survey. Due to a rainfall event recorded in the previous weeks, some sections of the Project area were unable to be accessed as part of the soil survey. Alternative sample locations were selected that were still considered representative of the targeted landscape.
Service Identification and Clearance (SIC) Procedure		17 March 2022	 AECOM obtained Dial-Before-You-Dig plans from utility companies for services within the vicinity of the proposed Project area within 28 days of the planned ground disturbance, in accordance with AECOM's SIC Checklist (S4AN-331-FM1). An AECOM SIC Variation (S4AN-331-FM2) was approved for locations to be advanced without the area first being cleared by an independent service locator.
Arrow Permit to Work (PTW)		22 and 23 March 2022	Arrow directly engaged DIH Contracting Pty Ltd to be the Permit Holders under Arrow's PTW system for the excavation works of the detailed sites (involved penetration into a ground surface greater than 300 mm), in accordance with Arrow's Excavation Procedure (ORG-ARW-HSM-PRO-00039).
Soil survey	Detailed sites	22 and 23 March 2022	 Soil logging at seven detailed sites along the Project area Collection of soil sample for laboratory analysis at three detailed sites (DS01, DS04 and DS07) from the following depth intervals: 0-0. m, 0.2-0.3 m, 0.5-0.6 m, 0.8-0.9 m, 1.1-1.2 m, 1.5-1.6 m and 1.9-2.0 m. Care was taken to not sample across horizonal boundaries.
	Surface sites	23 March 2022	 Soil logging at four surface sites along the Project area (SS001 to SS04). The following locations were moved due to poor access or site observations: SS01 and SS03. Collection of one composite sample (0.0-0.3 m) for laboratory analysis from each surface site.
	Check sites	23 March 2022	 Soil logging at three check sites along the Project area (CS01 to CS03). CS02 and CS03 were moved due to poor access or site observations

5.0 Soil Mapping Units


The soil mapping units (SMU) boundaries were predicted from digital terrain images, existing topographic land systems maps and refined after the interpretation of identifiable landscape features and analytical results of samples from representative and surface sites. SMU may consist of one of more ASC soil orders. For soils intersected by this Project, the two soil types encountered were, based on their lithologic and construction management similarities, grouped as one SMU.

The inferred spatial distribution of the SMU is shown in **Figure 7** and a summary presented in **Table 7**. A representative summery of the soil landscape, profile morphology, chemistry for each SMU is provided in the following subsections.

Table 7 Identified SMU

SMU	Soil type	ASC	Observations	# of sites
1	Well-structured cracking clay	Vertosol	DS01 to DS07	12
			SS01 to SS04	6
			CS01 to CS03	8

Figure 7 Soil Management Units

5.1.1 Well Structured Cracking Clay Soils

Based on the soil survey observations, surface mulching and small cracks were widely observed uniformly for the SMU. However, majority of the Project area is extensively cropped, with alterations to the landscape topography making features such as gilgai (often associated with, but not exclusively with Vertosols) difficult to detect. Other distinctive soil properties of these soils are slickensides, which were difficult to confirm due to the high moisture status and extensive tillage of the soils at the time of the soil survey.

An example soil landscape summary and soil profile description are presented in **Table 8** and **Table 9**, respectively. Soil logging sheets for each site/observation are presented in **Appendix A**. Three representative sites (DS01, DS04 and DS07) were selected for laboratory analysis, with a summary of analytical results for DS01 presented in **Table 10**.

Complete tabulated data analytical table with an explanation of the guidelines used for the interpretation of the laboratory data presented are summarised in **Appendix B** and copies of the laboratory reports are presented in **Appendix C**.

Table 8 SMU soil landscape summary

Item	Description					
Representative Site ID	DS01					
Site photographs						
Location	309629 m E, 6985359 m N	Disturbance	Cultivation, irrigated, past or present			
Current land use	Cultivation, in-fallow	Vegetation	Extensively cleared land, isolated stands of Brigalow nearby			
Landform element/pattern	Flat, level plain	Slope (%)	<1%			
Microrelief	Nil	Erosion	Nil erosion			
Surface condition	Cracking clay, some coarse fragments	Drainage	Poorly drained			
General comments	General comments Slightly alkaline to alkaline pH at depth, very low salinity surface soils trending to moderately saline around 2.0 m					

SMU soil profile morphology summary Table 9

Horizon Depth (m)	Field texture	Strength/ structure	Inclusions/ segregation s	Colour/ mottles	Moisture	Roots	pH/EC
A1 0.0 to 0.2 Clear	Sandy Clay to Clay Loam	Massive apedal	5% organic, calcareous, fragments	2.5 Y 5/2 Moist		Few fine roots	7.7/ 74 µS/cm
B1 0.2 to 1.1 Gradual	Medium Clay	Moderate to strong blocky/pol yhedral	2-5% calcareous, fragments	2.5 Y 3/1 Moist		None observed	8.3-8.7 171 to 369 µS/cm
B2 1.1 to 2.0	Heavy Clay	Strong blocky/pol yhedral	2-5% calcareous, fragments	2.5 Y 4/1	Moderately moist	None observed	8.3-8.6 353 to 1170 µS/cm
Field Photos	01-0.2	SW (T) LAT: -27.1699		W 270 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	W (T) LAT: -27.169976 LON:	240 270 151.078884 ±39ft A	1090ft
ASC Mappi	ng	Verto	sol	ASC Soil S	urvey	Vertosol	

Table 10 SMU soil chemistry results for DS01

Analysis	Sample Depth						
Units	0.0-0.1	0.2-0.3	0.5-0.6	0.8-0.9	1.1-1.2	1.5-1.6	1.9-2.0
Soil pH	7.7	8.6	8.7	8.3	8.6	8.4	8.3
Soil EC (µS/cm)	74	220	369	171	559	353	1170
PSA-Sand (0.06-2m%)	26	-	-	-	-	-	-
PSA- Silt (2-60µm%)	24	-	-	-	-	-	-
PSA-Clay (<µm%)	49	69	68	51	69	68	77
Moisture content FC (%)	45.6	46.2	43.3	-	43.0	-	47.9
Moisture content WP (%)	19.8	23.1	22.0	-	23.0	-	23.9
CEC (meq/L)	31.6	36.8	35.6	31.1	35.3	34.2	37.8
Phosphate Buffering Index	60	102	93	-	81	-	55
Ca/Mg (ratio)	4.4	2.7	1.4	3.8	1.4	1.8	0.9
ESP (%NaCEC)	0.7	4.1	9.7	1.7	11.1	8	13.2

A summary of all the laboratory results and observations for soils within the SMU is given below:

Topsoil

The topsoils are approximately 0.1 m to 0.3 m in thickness. They consist of very dark greyish brown (2.5 YR 5/2) to very dark grey clay loam to light clays, with a moderate (2 mm to 10 mm thick), self-mulching surface. Structure is predominantly medium to strong subangular block to polyhedral (50 mm to 100 mm) towards the surface, with the clay content ranging between 49 % and 69 %. The total sand content in the topsoils ranged from 11 % to 26 %, with up to 3 % gravel in some profiles. The pH ranged from 6.5 (near neutral) to 8.8 (strongly alkaline). The presence of roots ranged from few to common.

The capacity of these soils to store nutrients is very high, with total CEC ranging from 29.1 milliequivalents per 100 grams (meq/100 g) to 38.5 meq/100 g, while organic matter levels were moderate, with values ranging from 1.6 % to 2.6 %. Total nitrogen levels in topsoil were reported as low, with values between 450 mg/kg N to 1350 mg/kg N. Soil phosphorus levels are typically very low to medium high, with high calcium and magnesium levels Topsoil potassium levels are moderate to high, with values ranging between 0.2 meg/100 g and 1.4 meg/100 g.

Topsoil salinity (EC 1:5) is very low to low, with levels ranging from 47 microsiemens per centimetre (μ S/cm) to 220 μ S/cm. The topsoil is non-sodic to slightly sodic and does not need any gypsum ameliorations, with the ESP ranging from 0.7 % to 9.2 %, while the Emerson Aggregate Test class ranged between 2 and 4 for this soil, indicating that this soil is aggregated and has a low dispersion risk. This is also consistent with the presence of the logged calcareous inclusions.

Subsoil

The subsoil depth typically ranged from 0.3 m to 2.0m and consisted of a very dark grey (2.5 YR 3/1) medium clay B21 horizon, over a brown (2.5 YR 4/1) medium heavy clay B22 horizon with a C horizon at select locations. The B21 horizon displayed a weak to moderate sub-angular blocky to polyhedral structure (50 mm to 150 mm), grading into a moderate angular blocky B22 horizon at 1.0 m to 2.0 m below the surface. The CECs are very high, while subsoil pH ranged from 6.8 (near neutral) to 8.7 (strongly alkaline) in the lower subsoil.

Subsoil salinity (EC 1:5) levels are very low, with an average EC of 644 μ S/cm , while chloride levels range from 100 milligrams per kilogram (mg/kg) to 1780 mg/kg in the lower subsoil. Subsoil ESP ranged from being non sodic to slightly sodic (1.7 % to 13.2 %) in the upper subsoil, to marginally sodic in some profiles. The subsoils are stable, with the Emerson Aggregate Test class ratings of 2 to 4, consistent with the presence of natural calcareous inclusions. Roots are common. Based on the data,

the calculated average gypsum application rates for the samples collected from subsoils of SMU is 0.8 tonnes/ha.

6.0 Soil Disturbance Management Strategies

6.1 Rehabilitation Considerations

The well-structured cracking clays are generally stable and non-sodic throughout the profile and would not require any additional specific management practices if disturbed.

The surface soil (0.0 m to 0.3 m) is highly suitable for stripping and stockpiling as a primary growth media and suited as secondary growth media (lower-most soil layer placed directly in contact with over burden or other spoil material) in the re-establishment of vegetation, due to sufficient nutrient load, non-dispersive and non-sodic properties and moderate alkalinity.

The B1 horizon or upper subsoil (0.2 m to 0.6 m) and B2 horizon or lower subsoil are also suited as secondary growth media. The mixing of heavy textured material with lighter textured sandy material will improve the physical properties and workability of these clays and make them more suitable as growth media for use in rehabilitation (Elliott and Veness, 1981).

6.2 Topsoil Suitability and Management

Topsoil refers to the upper soil layers (A horizons) of soil profiles. The A horizons contain more suitable growth media (seed stock, biota, organic matter and nutrients) which typically decreases with soil profile depth. In some situations, the upper portion of the subsoil (B21 horizon) maybe also provide suitable growth media.

Laboratory soil analysis data (**Appendix B**), and field data was used in conjunction with criteria outlined in the *Selection of Topdressing Material for Rehabilitation of Disturbed Areas in the Hunter Valley* (Elliott and Veness, 1981) to determine the suitability of available soil material for recovery and use as either primary (the upper most layer placed over a rehabilitation layer or secondary growth media (the lower most layer of soil, placed directly in contact with overburden or other spoil material).

The suitability of soil within SMU 1 for reuse as topsoil has been determined by reviewing the soil properties, such as salinity, permeability if subsoils, plant available nutrients and effective rooting depth, against the criteria set out in *Interpreting Soil Test Results* (Hazelton & Murphy, 2007).

Additionally, topsoil management should be undertaken in line with the requirements listed in Arrow's Land Disturbance Procedure (ORG-ARW-HSM-PRO-000146).

The soils included within the SMU primarily intersect areas of current cultivation across the entire Project area. Native vegetation has been mostly cleared, except for fringing woodland to open forests along lot/plan boundaries or road reserves. The major land disturbance is considered to occur during excavation works for the proposed well heads, pipeline, and access road construction.

Given the agricultural potential of soils within this SMU, topsoil management is a key consideration for maintaining surface soil stability and supporting revegetation success post disturbance.

The recommended stripping depths for topsoils within SMU 1 is 0.3 m, with consideration of the below:

- Soil moisture content should be reviewed prior to handling or traversing with heavy vehicles.
- Workability can be improved by adding a sandier textured material.
- Depth to saline soils are variable across the alignment.

Topsoil management should be undertaken in line with the requirements listed in Arrow's *Land Disturbance Procedure* (ORG-ARW-HSM-PRO-000146).

It should be noted that the depth of topsoil reinstatement within the SMU will vary across the Project area with consideration for current/future land use and revegetation requirements. In areas of cultivation or cropping, topsoils should be reinstated to the pre-disturbance thickness or a thickness large enough to avoid mixing with deeper soil material (which can be sodic and saline at depths ~1.5 m).

6.3 Stripping, Stockpiling and Handling

Prior to disturbance, any trees (along road reserves) permitted for clearing may be reused, if suitable, as sawn timber, fence posts or firewood. In areas where there is a shortage of topsoiling material and to improve the physical properties of sandy material, woody vegetation can be chipped to provide a mulch and for soil amendment in rehabilitation areas.

Suitable growth media must be stripped to depths outlined in **Section 6.1.** Marker pegs should be used to outline and indicate the required stripping depths for machinery operators. This is especially important when stripping soils are within dispersive subsoil horizons. Stripping of excessively wet soils is not recommended as the soil workability and handling of the heavier textured soils can lead to excessive compaction if trafficked when wet.

During excavation of soils in the SMU intersected by the ROW, it is important to separately stockpile material and avoid mixing of growth media (topsoil) and subsoil.

Stockpiles must not exceed 3 m in height, to reduce physical, biological and chemical degradation occurring in the stored material. Periods of stockpiling should not exceed 6 to 12 months and preferably not extend over a wet season. Where this is unavoidable vegetation should be introduced to allow stabilisation. Quick establishing pasture species and mulches are recommended to manage surface erosion.

Stockpiles are to be located in areas that are outside of drainage lines and drainage from upslope positions must be diverted to prevent stockpile erosion. Appropriate sediment control measures should be installed downstream of the stockpiles to reduce runoff and trap sediment. The majority of the Project area is in a flat landscape (slope <3%) as such presents a low risk of surface runoff and erosion.

Stockpiles need to be clearly sign-posted for easy identification to facilitate the correct future reuse of material. Establishment of weeds on the stockpiles must also be monitored and controlled.

6.4 Topsoil Reuse

Excavated soils should be returned to the trench in the pre-disturbance soil profile. Topsoil that has been stripped can be re-spread as part of stabilisation and rehabilitation activities.

The following recommendations are included for topsoil reuse:

- Compacted surface layers of disturbed areas should be deep ripped along the contour prior to the re-spreading of re-growth media to improve the water infiltration capacity and aeration.
- Mechanical or chemical weed management should be carried out on stockpiles (if required) prior to use to reduce weed infestation.
- Growth media should be spread in the reverse order to stripping and ameliorants added in the same operation (0.1 to 0.3 m for primary growth media).
- The deep ripping of the spread material along the contour will aid in 'keying' of this material into the underlying layers.
- Further 'roughening up' of the spread layer using a disc harrow will help reduce runoff, increase infiltration and improve seedling germination.

6.4.1 Compaction Strategies

The backfilling and compaction of the pipeline trench is also dependant on the use of appropriate equipment suited for compacting soil in trenches, ensuring the soil is moisture conditioned (i.e. if the soil is too wet or dry to compact) adding moisture based on the inherent moisture content. The soils are generally placed in thin layers (approximately 300 to 400 mm), adding moisture conditioning, if needed, followed by thorough tamping with the bucket (or a roller attachment for the excavator). The site-specific compaction strategies are informed by the geotechnical assessment and pipeline construction design.

Compaction of surface layers within the ROW disturbance areas should be undertaken in a way to improve the water infiltration capacity and aeration along the contour, prior to the re-shaping and respreading of topsoil and revegetation.

6.5 Soil Erosion

The soils within the SMU are located on agricultural land, identified as flat level plains with slopes of <3%. While the potential for erosion is less of a concern with this SMU, appropriate erosion and sediment control measures should be documented prior to works commencing to consider drainage flow directions and diversions required to prevent erosion.

Generally, the following recommendations are included to prevent soil erosion:

- Rehabilitation methodologies must aim to create a stable, non-polluting landform capable of achieving the desired post construction land use.
- Minimising the amount of land clearing to essential areas during the construction of the pipeline.
- Minimising the duration of reused or disturbed soil exposure.
- Directing runoff from undisturbed areas in engineered waterways away from disturbed areas and topsoil stockpiles for the safe downslope disposal into existing watercourses.
- Sediment control dams are used to capture sediment laden runoff prior to off-site release. Treatment with lime, gypsum or bentonite may be required for highly dispersive soils.
- Restricting traffic and grazing, in the cultivated area especially in wet season should be considered in order to generate effective vegetation cover.
- Disturbed areas should be stripped to the recommended depths **Section 6.1** and suitable material stockpiled. Stockpiles that are required for periods longer than six months or a growing season should be ripped and seeded to limit erosion.
- Topsoil replacement should be completed as close as possible to the anticipated sowing date
 which should be completed during the most favourable climatic conditions to maximise vegetative
 ground cover.

6.6 Construction Inspection and Maintenance Regimes

The disturbance area should continue to be visually monitored until such time that the site is considered effectively stabilised or rehabilitated, in line with Arrow's rehabilitation criteria. To help in adequate rehabilitation, the quantity of ameliorants needed (if any) for topsoil and subsoil based on preconstruction land use are generally calculated based on site specific laboratory analysis.

After completion of pipeline installation, cropped areas should be stabilised to combat erodible / dispersive surface soils (below topsoil) and then topped with a topsoil dressing to match the thickness and quality of the surrounding topsoils of undisturbed areas, as a minimum. Ideally, topsoils stripped during pipeline installation would have been stockpiled and reused in the same location and to the same thicknesses to match the original soil profile as closely as was practical. Inspection and maintenance should include assessment of surface stabilisation (e.g. – lack of erosion of the topsoil / crop-supporting layer and the health of surface vegetation) in accordance with Arrow's rehabilitation criteria.

Waterway crossings might require specific inspection and maintenance regimes, which should be considered at the time of conceptualising and designing each crossing.

7.0 Conclusions

The well and gathering Project intersects two ARIs, PAA (PALU) and SCA, and as such requires a RIDA application to be submitted under the RPI Act.

Based on a review of existing available soil mapping for the region, two landscape units and two LRAs were identified to likely be intersected by the Project. Identified soils include self-mulching cracking clays/ vertosols, typical of the Central Darling Downs region

Based on the cartographic scale of the available soil mapping (between 1:250,000 and 1:2,000,000), a soil survey was undertaken along the Project area to refine mapped soils and aid in the development of suitable construction management measures.

The soil survey used a free survey approach, with a target mapping scale of 1:50,000 corresponding to 14 observations sites along the alignment. A total of seven detailed sites (sub-set of three representative sites selected for laboratory analysis), four surface sites and three check sites were made across the alignment.

Based on the soil survey observations and analytical results of samples from representative and surface sites, the soils across the Project area were considered to be consistent as a single SMU and classified as well-structured cracking clay soils. The soils included within the SMU primarily intersect areas of current cultivation or cropping along with some area along the existing road reserve.

Given the agricultural potential of soils within the SMU, topsoil management is a key consideration for maintaining surface soil stability across the Project area and supporting revegetation success post disturbance. The recommended stripping depths for topsoils (0.0 – 0.3 m) was identified depending on the soil properties identified during the soil survey, such as salinity, subsoil permeability, plant available nutrients and effective rooting depth. Topsoil management should be undertaken in line with the requirements listed in Arrow's *Land Disturbance Procedure* (ORG-ARW-HSM-PRO-000146).

Engineering and design practices will be required to manage infrastructure, foundations, and buried conduit in the soils identified along the Project. Appropriate erosion and sediment control measures and application of appropriate spoil ameliorants (gypsum and organic matter) should be documented prior to works commencing to prevent erosion. Site-specific compaction strategies should also be informed by the geotechnical assessment and pipeline construction design.

The ROW disturbance area within the Project area should continue to be visually monitored until such time it is considered effectively stabilised or rehabilitated, in line with Arrow's rehabilitation criteria (i.e. presence of erosion and/or health of surface vegetation).

8.0 References

AECOM, 2021a. Surat Low Pressure Header (LPH) Pipeline: Soil Assessment. 25 March 2021.

AECOM, 2021b. Surat LPH Pipeline: Sampling Analysis Quality Plan (SQAP). 25 June 2021.

Arrow, 2020. Land Rehabilitation Plan. ORG-ARW-HSM-PLA-00064. Version 5. November 2020.

Arrow, 2020. Land Disturbance Procedures. ORG-ARW-HSM-PRO-00146.

Ashton LJ and McKenzie NJ, 2001. Conversion of the Atlas of Australian Soils to the Australian Soil Classification, CSIRO Land and Water (unpublished).

Harris PS, Biggs, AJW and Stone, BJ (eds), 1999. Central Darling Downs Land Management Manual. Department of Natural Resources, Queensland. DNRQ990102.

CSIRO, 2011. Physiographic Regions of Australia. Bioregional Assessment Source Dataset. Viewed 19 July 2021. http://data.bioregionalassessments.gov.au/dataset/a0f3edb6-6afd-4eb9-a9be-e815f8ec4eab

Department of Environment and Science (DES), 2021. Environmental Authority EPPG00972513. Dated 5 February 2021.

DES, 2021. Environmental Authority EA0002659. Dated 14 January 2021.

Department of Natural Resources and Mines (DNRME), 2018. Detailed surface geology – Queensland. MERLIN Database. Accessed 19 July 2021.

DNRME, 2019. Office for Groundwater Impact Assessment (OGIA): Updated Geology and Geological Model for the Surat Cumulative Management Area.

Department of State Development, Manufacturing, Infrastructure and Planning (DSDMIP, 2019. RPI Act Statutory Guideline 02/14: Carrying out resource activities in a Priority Agricultural Area. State of Queensland. August 2019.

DSDMIP, 2019. RPI Act Statutory Guideline 03/14: Carrying out resource activities in a Strategic Cropping Area. State of Queensland. August 2019.

Elliot, GL and Vaness, RA (1981) Selection of topdressing material for rehabilitation of disturbed areas in the Hunter valley, Journal of the Soil Conservation Service of NSW 37-40.

Guidelines for Growth Media Management (EHP, 1995)

Geoscience Australia, 2021, SRTM-derived 1 Second Digital Elevation Models Version 1.0, Commonwealth of Australia. Accessed 19 July 2021.

Isbell RF, 2002. The Australian Soil Classification. Revised Edition. CSIRO Publishing, Melbourne.

Rayment, GE and Lyons, DL, 2011. Soil Chemical Methods – Australasia. CSIRO Publishing, Melbourne.

Soil Science Australia, 2015. Guidelines for Soil Survey along Linear Features.

State of Queensland, 2021. Queensland Globe https://qldglobe.information.qld.gov.au/

The National Committee on Soil and Terrain (NCST), 2009. *Australian Soil and Land Survey Field Handbook*. CSIRO Publishing.

9.0 Limitations

AECOM Australia Pty Ltd (AECOM) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Arrow Energy Pty Ltd (Arrow) and only those third parties who have been authorised in writing by AECOM to rely on this soil assessment (report).

It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report.

It is prepared in accordance with the scope of work and for the purpose outlined in the professional services agreement (10315CNT) and Call-off-Order (COO) dated 25 November 2020.

Where this Report indicates that information has been provided to AECOM by third parties, AECOM has made no independent verification of this information except as expressly stated in the report. AECOM assumes no liability for any inaccuracies in or omissions to that information.

This report was prepared between July and August 2021 and is based on the available information at the time of preparation. AECOM disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Except as required by law, no third party may use or rely on this report unless otherwise agreed by AECOM in writing. Where such agreement is provided, AECOM will provide a letter of reliance to the agreed third party in the form required by AECOM.

To the extent permitted by law, AECOM expressly disclaims and excludes liability for any loss, damage, cost or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this report. AECOM does not admit that any action, liability or claim may exist or be available to any third party.

Except as specifically stated in this section, AECOM does not authorise the use of this report by any third party.

It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the site.

Any estimates of potential costs which have been provided are presented as estimates only as at the date of the report. Any cost estimates that have been provided may therefore vary from actual costs at the time of expenditure.

Appendix A

Soil Logging Sheets

SOI	L LO	GGING	SHE	ET								DS01
Project WWG Obser Detaile Eastin 30966: Draina Poorly Land u	Project: WG 60651803 Disservation Type: Detailed Site 23 March 2022 Easting / Northing: 109665 / 6993285 Drainage: Coultivation Disturbance: Cracked, self mulched and tilled									たが目は	<u> </u>	
Horizo	n		0.1		T		70	Coarse			3	EC
Туре	Depth	Boundary	Colour	Mottles	Texture	Moisture	Structure	Fragments	Segregations/ Inclusions	Roots	pН	(µS/cm)
0	0.0-0.01	Clear	2.5Y 5/2	none	Clayey Sand	Moist	Massive	5-10%	5% very fine calcareous, gypseous and organic concretions	Few roots	7.7	74
A	0.01-0.2	Gradual	2.5Y 3/1	none	Clay Loam	Moist	Weak, fine, subangular blocky to polyhedral	0.05	2% very fine calcareous and organic concretions	Few roots	8.6	220
B1	0.2-1.1	Gradual	2.5Y 3/1	none	Medium Clay		Moderate to strong, medium sized, subangular blocky to polyhedral	1-2%	2% fine calcareousand organic concretions	-	8.7	369
B2	1.1-1.5	Gradual	2.5Y 4/1	Common medium mottles		Moderately moist	Strong, medium sized, subangular blocky to polyhedral	0.05	1% fine calcareous concretions	-	8.6	559
B22	1.5-2.0	Gradual	2.5Y 4/1	Few fine mottles		Moderately	Strong, medium sized, subangular blocky to polyhedral	4 50/	5% fine calcareous concretions	-	8.3	1170
								Existing soil mapping: Vertosol Soil survey: Well-Structured Cracking clay soils Remarks: Adjacent cropping paddock and access track.				

SOI	L LO	GGING	SHE	ET								DS02
Projec	t:		Project N				A STATE OF THE PARTY OF THE PAR	700		The last		
NWG			60651803	}				1		-	20	
	vation Ty		Date:						State of the last			
	d Site		22 March					-			6	
	g / North 3 / 69897		Topograp Flat, level				THE RESERVE TO SERVE THE PARTY OF THE PARTY	AND AND		100		
raina			Disturbar					の一生の方が			1	
		ly drained	1					100	The same of the sa	STEEL ST		
and ı			Surface o				1000000	1		2434	50	
ultiva	ition		Cracked,	self mulched and	l tilled							
orizo	n Depth	Boundary	Colour	Mottles	Texture	Moisture	Structure	Coarse Fragments	Segregations/ Inclusions	Roots	рН	EC (µS/cm
1	0.0-0.2	Gradual	2.5Y 3/1	none	Clay Loam	Moist	Weak, fine, subangular blocky to polyhedral	5-10%	10% organic and root linings, concretions and fragments	very fine roots		50
1	0.2-0.5	Gradual to clear	2.5Y 3/2	none	Light Clay		Moderate, medium sized, subangular blocky to polyhedra	E 100/	5% ferromanganiferous, and manganiferous concretions and nodules	Few fine roots	8.7	40
2	0.5-1.7	Gradual	2.5Y 3/2	none	Medium Clay	Moist	Strong, medium sized, subangular blocky to polyhedra	1-5%	5% fine organic root linings	Few fine roots		40
22	1.7-1.9	Gradual	2.5Y 3/2	None	Medium Clay		Strong, medium sized, subangular blocky to polyhedra	1-5%	2% medium calcareous concretions	-	9.3	297
1	1.9-2.2	Clear	10YR 5/4	Few fine grey- black mottles	Heavy Clay		Strong, medium sized, subangular blocky to polyhedra	<5%	1-5% fine ferruginous-organic and ferromanganiferous concretions	-	8.5	269
				M				Existing so Vertosol	il mapping:			
			-			100		Soil survey Well-Structu	: red Cracking clay soils			
									addock next to access track. At 1.5 incr sum/limestone.	ease in se	egrega	itions,

SOIL LOGGING SHEET **DS03** Project No: 60651803 Project: wwig Observation Type: Date: Detailed Site 22 March 2022 Easting / Northing: 315206 / 6989503 Topography: Flat, level plain Drainage: Poorly drained Disturbance: Surface condition: Cracked, self mulched and tilled Land use: Cultivation Horizon Coarse Colour Mottles Texture Moisture Structure Segregations/ Inclusions Roots рΗ Type Depth Fragments (µS/cm) Boundary Many fine 5% fine ferromanganiferous, Weak, medium sized, subangular blocky to polyhedral 5-10% 10YR 3/1 0.0-0.2 Clear mechanical Clav Loam Moist manganiferous, organic soft segregations and root linings roots mixing patterns Light medium Moist Strong, medium sized, subangular blocky to polyhedral 2% very fine ferromanganiferous and Few 0.2-1.2 Gradual 2.5Y 3/2 none manganiferous soft segregations Clay oots Moderate to strong, medium sized, subangular blocky to Light medium Clay Few fine 2% very fine calcareous and Gradual B2 1.2-1.6 2.5Y 3/2 1-2% Very few mottles ferruginous-organic soft segregations roots polyhedral Moderate to strong, medium 1% medium calcareous concretions Common B2 1.6-2.0 Clear 10YR 3/3 Medium Clay Moist 1-5% sized, subangular blocky to medium mottles and soft segregations polyhedral Existing soil mapping: Vertosol Soil survey: Well-Structured Cracking clay soils Remarks: Cropped paddock next to farm shed. At 1.6 reddish greyish gravel mixed with clay (Gravelly/Bedrock)

SO	IL LO	GGINC	SHE	ET								DS04
Proje			Project N								18	
WWG	vation Ty	no:	60651803 Date:	<u> </u>						-		
	ed Site	pe.	23 March	2022					Fame William Co.		1	
	ng / Northi 2 / 698928		Topograp Flat, level				To be a second	100				
Drain Modei	age: rately drain	ed	Disturbar 1	nce:				-				
Land Cultiva	use:			ondition: self mulched and t	illed			1				
Horiz	1	Boundary	Colour	Mottles	Texture	Moisture	Structure	Coarse Fragments	Segregations/ Inclusions	Roots	pН	EC (µS/cm)
Type O	Depth 0.0-0.03	,	2.5Y 5/2	none	Loamy Sand	Wet	Massive	5-10%	5% very fine organic root linings and soft segregations	Few roots	6.8	72
A	0.05-0.3	Gradual	2.5Y 3/2	none	Clay Loam	Wet	Weak, fine, subangular blocky to polyhedral	1-5%	5% very fine organic, manganiferous, ferromanganiferous, ferruginous concretions and root linings		7.3	83
B1	0.3-0.8	Gradual	2.5Y 3/1	none	Light medium Clay	Moist	Moderate to strong, medium sized, subangular blocky to polyhedral	1-5%	5% very fine organic, manganiferous, ferromanganiferous, ferruginous concretions and root linings	Few fine roots	7.7	512
322	0.8-1.5	Gradual	2.5Y 3/1	None	Medium Clay	Moist	Strong , medium sized, subangular blocky to polyhedral	1-5%	5% very fine organic, manganiferous, ferromanganiferous, ferruginous concretions and root linings	-	8.1	694
B23	1.5-2.0	Gradual	2.5Y 5/1	Common mottles	Medium Clay	Moist	Strong, medium sized, subangular blocky to polyhedral	0.01	1% fine calcareous concretions	-	8.3	927
		4	L					Existing so Vertosol	il mapping:			
				1			7	Soil survey Well-Structo	r: ured Cracking clay soils			
									opping paddock and access road. At 1.s s along with gravels (10-20%).	5 inclusio	ns of (greyish

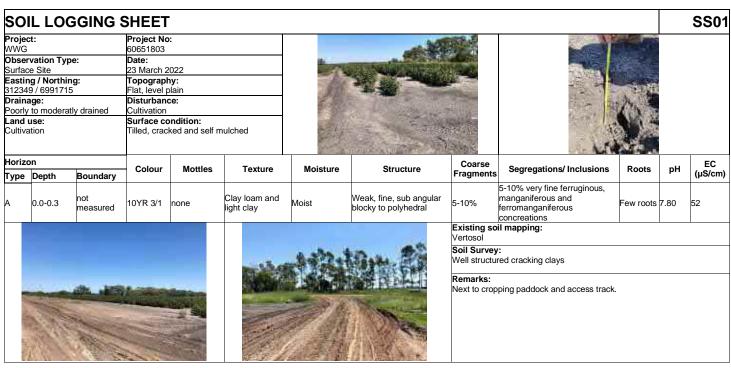
SOIL LOGGING SHEET **DS05** Project: Project No: WWG 60651803 Observation Type: Date: Detailed Site 22 March 2022 Easting / Northing: 313477 / 6987554 Topography: Flat, level plain Drainage: Disturbance: Poorly drained Surface condition: Cracked, self mulched and tilled Land use: Cultivation Horizon Coarse EC Segregations/ Inclusions Colour Mottles Texture Moisture Structure Roots рΗ Type Depth Fragments (µS/cm) Boundary 5% very fine calcareous, gypseous and manganiferous concretions, Many fine 7.7 53 Weak, fine, subangular blocky 7.5YR 4/3 mechanical 5-10% 0.0-0.1 Clear Clay Loam Moist -ew to polyhedral mixing patterns nodules and root linings Weak, fine, subangular blocky Clear to 2-10% fine ferromanganiferous and Few 8.1 210 0.1-0.3 10YR 4/1 Light Clay Moist 5-10% none Gradual to polyhedral organic segregations oots Moderate to strong, medium 8.5 370 В1 0.3-1.2 10YR 3/1 1-5% 1% fine calcareous concretions Gradual none Medium Clay Moist sized, subangular blocky to polyhedral Very few fine Moderate, medium sized, 1-5% fine manganiferous and 8.3 200 В2 1.2-1.8 Gradual 10YR 3/1 Medium Clay Moist 1-5% subangular blocky to polyhedral Moderate to strong, medium ferromanganiferous concretions 2% fine ferruginous and calcareous nottles Very few fine Moderately 488 10YR 3/1 Heavy Clay 1.8-2.0 0.05 Gradual nottles moist sized, polyhedral concretions Existing soil mapping: Vertosol Soil survey: Well-Structured Cracking clay soils Remarks: Cropping paddock next to access track. From 0.1-0.3 grey gravelly saturated segregations. From 1.8-2.0 increase in grey gravelly segregations.

SO	L LO	GGING	SHE	ET								DS06
Projec WWG			Project N 60651803				- 1				1	
	vation Ty	oe:	Date:					1	2 光元十五			
	ed Site		22 March					150	7	N.		
	ng / Northi 6 / 698519		Topograp Flat, level				Market Street					
)raina			Disturbar							10		
Land		•	Surface of Cracked,	condition: self mulched and	I tilled			*		1		
lorizo	on Depth	Boundary	Colour	Mottles	Texture	Moisture	Structure	Coarse Fragments	Segregations/ Inclusions	Roots	рН	EC (µS/cm)
)	0.0-0.05	Clear	5Y 3/1	none	Clay Loam		Weak, fine, subangular blocky to polyhedral	5-10%	5% very fine manganiferous and ferromanganiferous concretions	Few roots	8.3	180
١	0.05-0.5	Gradual	5Y 3/1	none	Clay Loam	Moist	Weak, fine, subangular blocky to polyhedral	0.05	2% very fine manganiferous and ferromanganiferous concretions	Few roots	8.1	76
32	0.5-1.2	Gradual	5Y 3/1	none	Medium clay		Moderate, medium sized, subangular blocky to polyhedra	I ^{1-5%}	5% medium calcareous, manganiferous and ferromanganiferous concretions	Few roots	8	244
322	1.2-1.4	Gradual	5Y 3/1	None	Medium clay	Moist	Moderate, medium sized, subangular blocky to polyhedra	1-5%	1% medium calcareous concretions	roots	8.5	157
323	1.4-2.0	Gradual	5Y 5/1	none	Medium Clay		Moderate to strong, medium sized, subangular blocky to polyhedral	1-5%	1% medium calcareous concretions	Few roots	8.5	157
		200				1	- 1	Existing so Vertosol	il mapping:		,I	-11
				7			T P	Soil survey Well-Structo	r: ured Cracking clay soils			
									addock. Cotton in the field next to crop. grey gravelly segregations which then			

SOIL LOGGING SHEET **DS07**

Project No:	
60651803	
Date:	
22 March 2022	
Topography:	
Flat, level plain	
Disturbance:	
1	
Surface condition:	
Cracked, self mulched and tilled	
	60651803 Date: 22 March 2022 Topography: Flat, level plain Disturbance: 1 Surface condition:

Horizo	Horizon		Colour	Mottles	Texture	Moisture	Structure	Coarse	Sograndiana/Indusiana	Roots	На	EC
Туре	Depth	Boundary		Wottles	rexture	woisture	Structure	Fragments	Segregations/ Inclusions	Roots	рп	(µS/cm)
A1	0.0-0.1	Clear to Gradual	5Y 3/1	none	Clay Loam	Moist	Weak, fine, subangular blocky to polyhedral	5-10%	5% fine calcareous, ferruginous, gypseous concretions	Few roots	6.9	47
B1	0.1-0.5	Gradual	5Y 3/1	none	Medium Clay	Moist	Moderate, medium sized, subangular blocky to polyhedral	0.05	2% fine calcareous, ferruginous concretions	Few roots	6.5	190
B2	0.5-1.2	Gradual	5Y 3/1	none	Medium clay		Moderate to strong, medium sized, subangular blocky to polyhedral	1-2%	2% fine calcareous, ferruginous concretions	-	6.8	361
B22	1.2-1.8	Gradual	5Y 3/1	None	Medium clay	Moist	Moderate to strong, medium sized, subangular blocky to polyhedral		5% fine calcareous, ferruginous concretions	-	7.7	583
C1	1.8-2.0	Gradual	5Y 3/1	none	Medium Clay	Moist	Moderate to strong, medium sized, subangular blocky to polyhedral	11-2%	1% fine to medium calcareous concretions	-	8.4	850
		100	-			100/10	CONTRACTOR DE	Frieting so	il manning:			



Existing soil mapping: Vertosol

Soil survey: Well-Structured Cracking clay soils

Remarks: Cropping paddock next to track. Some grey gravelly segregation in C1

		SHEET									SS02
t:		Project No) :								
								and the second	1. 40		
	e:		2000								
									486		
g / Nortnin S / 6985001	g:	Flat level r	n y: olain		TO SHARE						
					The same	ALL THE STREET	3 = -		44.15		
	ly drained				757		CONTRACTOR OF THE PARTY OF		68		
ise: tion				nulched		and the second			0		
n		Colour	Mottles	Texture	Moisture	Structure	Coarse	Segregations/ Inclusions	Roots	рН	EC
Depth	Boundary	Goloui	Motilos	Toxture	moiotaro	Otractare	Fragments	Cogregations, morasions	110010	ρ	(µS/cm)
0.0-0.3	not measured	2.5Y 5/2	none	Sandy clay loam	Moderately moist	Weak, fine, sub angular blocky to polyhedral	5-10%	10-15% coarse ferruginous, manganiferous and ferromanganiferous concreations	Few roots	8.80	162
					-	Section of the second	Existing so Vertosol	il mapping:			
			177		1		Remarks: Cropping pa	iddock, fallow at the time of sam	npling.		
t t	ration Type s Site g / Northin / 6985001 ge: to moderati se: ion	ration Type: e Site g / Northing: / 6985001 ge: to moderatly drained se: tion Depth Boundary	ration Type: P Site 9 Site 10 Morthing: 10 6985001 10 9085001 10 moderatly drained 10 moderatly drained	60651803 Pation Type: Date: 2 Site 23 March 2022 3 March 2022 7 Northing: Topography: 7 6985001 Flat, level plain ge: Disturbance: 0 moderatly drained Cultivation Se: Surface condition: Tilled, cracked and self n Depth Boundary Colour Mottles	60651803 Pation Type: Date: 2 Site 23 March 2022 3 / Northing: Topography: / 6985001 Flat, level plain ge: Disturbance: o moderatly drained Cultivation se: Surface condition: ion Tilled, cracked and self mulched Colour Mottles Texture	60651803 Pation Type: Date: 23 March 2022 g/ Northing: Topography: 76985001 Flat, level plain ge: Disturbance: 0 moderatly drained Cultivation se: Surface condition: Tilled, cracked and self mulched Colour Mottles Texture Moisture	S0651803 Solid S	Site Date: 23 March 2022	Site 23 March 2022 23 March 2022 24 25 March 2022 25 March 2022	Side 23 March 2022 23 March 2022 24 25 25 25 25 25 25	Solid Soli

SO	IL LOG	GING S	SHEET	Ī								SS03
Proje WWG			Project No 60651803	:		+		54	1			
	rvation Type ce Site) :	Date: 23 March 2	022			TO SELECT ON THE SE					
	ng / Northin	g:	Topograph Flat, level p			100						
Drain Poorly	age: to moderati	y drained	Disturbane Cultivation	ce:								
Land Cultiva	use:		Surface co Tilled, crac	ondition: ked and self m	ulched		。唐传		-4			
Horize		Boundary	Colour	Mottles	Texture	Moisture	Structure	Coarse Fragments	Segregations/ Inclusions	Roots	рН	EC (µS/cm)
A	0.0-0.3	not measured	2.5Y 5/2	none	Sandy clay loam		Weak, fine, sub angular blocky to polyhedral	5%	15% very fine manganiferous, ferromanganiferous, calcareous concreations	Common roots	7.00	63
			Y # 1		5 m			Existing so Vertosol	il mapping:			
					Man and			Soil Survey Well structur	red cracking clays			
	X						i den	Remarks: Cropping pa	ddock, fallow at the time of sam	pling.		

SO	IL LOG	GING	SHEET	•								SS04
Projec			Project No	:				100				
WWG			60651803					-		CONTRACTOR OF		
	vation Typ	e:	Date:			- 100		0.000				
	e Site		23 March 2			-				To be seen		
	ng / Northin 1 / 6985496		Topograph Flat, level p						新			
Draina Poorly	age: to moderat	v drained	Disturband Cultivation	ce:						火 洼		
Land			Surface co	ondition: ked and self m	nulched							
Horizo			Colour	Mottles	Texture	Moisture	Structure	Coarse Fragments	Segregations/ Inclusions	Roots	рН	EC (µS/cm)
l ype A	Depth 0.0-0.3	not measured	2.5Y 3/1	none	Clay loam	Moist	Weak, fine, sub angular blocky to polyhedral	50/	5-10% very fine calcareous and organic concreations	Few roots	8.30	100
ineasured.						Remarks:		pling.				

SOIL LOGGING SHEET CS01

Project:	Project No:
WWG	60651803
Observation Type:	Date:
Check Site	23 March 2022
Easting / Northing:	Topography:
310065 / 6990213	Flat, level plain
Drainage:	Disturbance:
Moderatley drained	Cultivation, past or present
Land use:	Surface condition:
Cultivation, Present Cotton	Tilled, cracked self mulched

Remarks:

Black self mulching clays, evidence of cracks on surface, middle of cotton cropped paddock and a water drain. Water drain is to allow for access of run off water. Evidence of run off gravels (red-brown).

SOIL LOGGING SHEET CS02

Project:
WWG 60651803

Observation Type:
Check Site 23 March 2022

Easting / Northing: Topography:
31636 / 6986105 Flat, level plain

Drainage:
Poorly to moderatley drained
Land use:
Road reserve

Tilled, cracked self mulched

Remarks:

Black clays on West side of highway. Tree line along the highway

SOIL LOGGING SHEET CS03

Project:
WWG
60651803

Observation Type:
Check Site
23 March 2022

Easting / Northing:
314456 / 6989634

Drainage:
Moderatley drained
Land use:
Cultivation, Past Wheat/Barley

Project No:
60651803

Tope:
23 March 2022

Topography:
Flat, level plain
Disturbance:
Cultivation, past or present
Surface condition:
Eroded, evidence of flooding

Remarks:

Cropping paddock, nothing growing. Evidence of historical/pre-season wheat/barley crop.

Appendix B

Analytical Tables

Appendix B Analytical Tables

TEST SIGNIFICANCE AND TYPICAL VALUES

Particle Size Analysis

Particle size analysis measures the size of the soil particles in terms of grainsize fractions and expresses the proportions of these fractions as a percentage of the sample. The grainsize fractions are:

- clay (<0.002 mm)
- silt (0.002 mm to 0.02 mm)
- fine sand (0.02 mm to 0.2 mm)
- medium and coarse sand (0.2 mm to 2 mm)

Particles greater than 2 mm, that is gravel and coarser material, are not included in the analysis.

Reference: Bond R, Craze B, Rayment G and Higginson, Australia Soil and Land Survey Laboratory Handbook 1990

Dispersion Percentage

Dispersion percentage is a measure of soil dispersibility representing the proportion of clay plus fine silt (<0.005 mm approximately) in a soil which is dispersible and is expressed as a percentage. The following rankings of dispersion percentage are applicable:

0 % to 30 % low
30 % to 50 % moderate
50 % to 65 % high
65 % to 100 % very high

Reference: Ritchie JA (1963) Earthwork Tunnelling and the Application of Soil Testing Procedures, Journal of Soil Conservation Service of NSW 19, pp 111-129

Emerson Aggregate Test

Emerson aggregate test measures the susceptibility to dispersion of the soil in water. Dispersion describes the tendency for the clay fraction of a soil to go into colloidal suspension in water. The test indicates the credibility and structural stability of the soil and its susceptibility to surface sealing under irrigation and rainfall. Soils are divided into eight classes on the basis of the coherence of soil aggregates in water. The eight classes and their properties are:

- Class 1 very dispersible soils with high tunnel erosion susceptibility.
- Class 2 moderately dispersible soils with some degree of tunnel erosion susceptibility.
- Class 3 slightly or non-dispersible soils which are generally stable and suitable for soil conservation earthworks.
- Class 4-6 more highly aggregated materials which are less likely to hold water. Special compactive efforts are required in the construction of earthworks.
- Class 7-8 highly aggregated materials exhibiting low dispersion characteristics.

The following subdivisions within Emerson classes may be applied:

- (1): slight milkiness, immediately adjacent to the aggregate
- (2): obvious milkiness, less than 50 % of the aggregate affected
- (3): obvious milkiness, more than 50 % of the aggregate affected
- (4): total dispersion, leaving only sand grains.

Reference: Bond R, Craze B, Rayment G and Higginson, Australia Soil and Land Survey Laboratory Handbook 1990

Sodicity

The exchangeable sodium percentage (ESP) is determined by measuring the concentration of all the exchangeable cations in the soil and expressing the amount of exchangeable sodium as a proportion of the sum of all exchangeable cations (known as the cation exchange capacity (CEC). Three categories of sodicity corresponding to different ESPs are shown:

Sodicity Rating	ESPs proposed for Australian Soils (Northcote and Skene 1972)
Non-sodic	0-6
Marginally sodic to sodic	6-14
Strongly sodic	>14

Electrical Conductivity/Salinity

Salinity is measured as electrical conductivity on a 1:5 soil:water suspension to give EC (1:5). The effects of salinity levels expressed as EC at 25°C (µS/cm), on plants are:

0 - 1000 very low salinity, effects on plants mostly negligible.

1000 - 2000 low salinity, only yields of very sensitive crops are restricted.

> 2000 saline soils, yields of many crops restricted.

Reference: Bond R, Craze B, Rayment G and Higginson, Australia Soil and Land Survey Laboratory Handbook 1990

pН

The pH is a measure of acidity and alkalinity. For 1:5 soil:water suspensions, soils having pH values less than 4.5 are regarded as strongly acid, 4.5 to 5.0 moderately acidic, and values greater than 7.0 are regarded as alkaline. Most plants grow best in slightly acidic soils.

Reference: Bond R, Craze B, Rayment G and Higginson, Australia Soil and Land Survey Laboratory Handbook 1990

Phosphorus

Phosphorus is an important soil component indicating a main limiting growth factor. The phosphorus that is available to the plant is only a small fraction of the total amount of phosphorus in the soil. Extractable phosphorus was determined by the Bray No. 2 test.

Available phosphorus at 5 ppm is considered the deficiency limit whereas levels greater than 25 ppm are very high.

Reference: Bond R, Craze B, Rayment G and Higginson, Australia Soil and Land Survey Laboratory Handbook 1990

Phosphorus Sorption

Phosphorus sorption relates to the ability of a soil to remove phosphorus from solution and assimilate it within the soil matrix. Sorption index ratings are:

0-3 low

3-4.5 moderate

4.5 - 6 high

>6 very high

Reference - Abott TS, BCRI Soil Testing Methods 1987

Nitrogen

Nitrogen is another important component of soil indicating a main limiting growth factor. The total amount of nitrogen in the soil was determined by the Kjeldahl method, which is essentially a wetoxidation procedure.

The total nitrogen of soils ranges from less than 0.2 per cent in subsoils to greater than 2.5 per cent in peats. The surface layer of most cultivated soils contains between 0.06 to 0.5% N. 1% is same as 10,000 mg/kg. As a guide, the following figures for total nitrogen may be used:

- less than 1000 mg/kg N low
- 1000mg/kg to 2000 mg/kg N medium
- more than 2000 mg/kg N high

Reference: Bond R, Craze B, Rayment G and Higginson, Australia Soil and Land Survey Laboratory Handbook 1990

Cation Exchange Capacity and Exchangeable Cations

The concentration of cations is expressed as milli-equivalents (me)/100 g or mmol/kg. This takes account of their different valencies and atomic weights. The total quantities of cations that a soil can hold is called the cation exchange capacity (CEC), also expressed as me/100g.

The five most abundant cations in soils are calcium (Ca2+), magnesium (Mg2+), potassium (K+), sodium (Na+) and in strongly acid soils, aluminum (Al3+). The cations manganese (Mn2+), iron (Fe2+), copper (Cu2+) and zinc (Zn2+) are usually in amounts that do not contribute significantly to the cation complement. The following rankings are applicable:

Cation (me/100g)		Ranking										
· · · · · · · · · · · · · · · · · · ·	Very low	Low	Moderate	High	Very High							
CEC	<5	5-10	10-15	15-35	>35							
Na	<0.1	0.1-0.3	0.3-0.7	0.7-2.0	>2.0							
K	<0.2	0.2-0.4	0.4-0.7	0.7-2.0	>2.0							
Ca	<2	2.0-5.0	5-10	10-20	>20							
Mg	<0.3	0.3-1.0	1.0-3.0	3.0-8.0	>8.0							

Soils or substrates having values of exchangeable sodium percentage (ESP) exceeding 5 me% are described as sodic, and greater than 15 me% as strongly sodic. The clay particles in such soils are liable to disperse on wetting, causing structure to deteriorate and surface sealing to occur.

Reference: Bond R, Craze B, Rayment G and Higginson, Australia Soil and Land Survey Laboratory Handbook 1990

Organic Carbon

Organic Carbon content can be directly related to the levels of soil organic matter and is based on the (Walkley – Black) chromic acid method. Percentage organic matter can be obtained by multiplying percentage organic carbon by 1.72. This factor is based on the assumption that organic matter in the soil has a constant carbon composition of 58 per cent.

The following rankings of organic carbon are applicable:

- 0 %to 0.5% very low
- 0.5 % to 1.5% low
- 1.5 %to 2.5% moderate
- 2.5 % to 5.0% high

Reference: Allison LE et al, Methods of Soil Analysis, 1965

											Ph	ysical P	arameters	3								
				Emerson Class Number	Laboratory Munsell Colour	Texture	Clay (<2 µm)	Sik (2-60 µm)	Sand (0.06-2.00 mm)	Gravel (>2mm)	Cobbles (>6cm)	+1180µm	+150µm	+19.0mm	+2.36mm	+300րm	+37.5mm	+4.75mm	+425µm	mu009+	+75.0mm	+75μm
	ı			-	-	-	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Location	Field_ID	Sample_Depth	Date_Time	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DS01	DS01_0.0-0.1	0-0.1	23/03/2022	4	Black (N 2.5/)	Medium Clay	49	24	26	1	<1	2	19	<1	<1	11	<1	<1	7	5	<1	26
DS01	DS01_0.2-0.3	0.2-0.3	23/03/2022	4	Very Dark Gray (N 3/)	Medium Clay	69	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DS01	DS01_0.5-0.6	0.5-0.6	23/03/2022	4	Very Dark Gray (N 3/)	Light Medium Clay	68	-	-	-	-	-	-	-	-	i	-	-	-	-	-	-
DS01	DS01_0.8-0.9	0.8-0.9	23/03/2022	4	Very Dark Gray (N 3/)	Medium Clay	51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DS01	DS01_1.1-1.2	1.1-1.2	23/03/2022	2	Very Dark Gray (N 3/)	Medium Clay	69	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DS01	DS01_1.5-1.6	1.5-1.6	23/03/2022	4	Black (N 2.5/)	Medium Clay	68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DS01	DS01_1.9-2.0	1.9-2	23/03/2022	2	Very Dark Gray (N 3/)	Medium Clay	77	-	-	-	-	-	-	-	-	,	-	-	-	-	-	-
DS04	DS04_0.0-0.1	0-0.1	23/03/2022	3	Black (N 2.5/)	Medium Heavy Clay	53	25	20	2	<1	2	15	<1	1	10	<1	<1	7	5	<1	21
DS04	DS04_0.2-0.3	0.2-0.3	23/03/2022	2	Black (N 2.5/)	Medium Heavy Clay	64	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DS04	DS04_0.5-0.6	0.5-0.6	23/03/2022	2	Black (N 2.5/)	Medium Clay	78	-	-	-	-	-	-	-	-	,	-	-	-	-	-	-
DS04	DS04_0.8-0.9	0.8-0.9	23/03/2022	2	Black (N 2.5/)	Medium Heavy Clay	80	-	-	-	-	-	-	-	-	i	-	-	-	-	-	-
DS04	DS04_1.1-1.2	1.1-1.2	23/03/2022	2	Very Dark Gray (N 3/)	Medium Heavy Clay	73	-	-	-	-	-	-	-	-	i	-	-	-	-	-	-
DS04	DS04_1.5-1.6	1.5-1.6	23/03/2022	2	Very Dark Gray (N 3/)	Medium Heavy Clay	81	-	-	-	-	-	-	-	-	i	-	-	-	-	-	-
DS04	DS04_1.9-2.0	1.9-2	23/03/2022	2	Very Dark Gray (N 3/)	Medium Heavy Clay	82	-	-	-	-	-	-	-	-		-	-	-	-	-	-
DS07	DS07_0.0-0.1	0-0.1	22/03/2022	2	Black (N 2.5/)	Medium Clay	52	27	20	1	<1	2	18	<1	<1	12	<1	<1	8	5	<1	21
DS07	DS07_0.2-0.3	0.2-0.3	22/03/2022	2	Black (N 2.5/)	Medium Clay	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DS07	DS07_0.5-0.6	0.5-0.6	22/03/2022	2	Black (N 2.5/)	Medium Heavy Clay	60	-	-	-	-	-	-	-	-	i	-	-	-	-	-	-
DS07	DS07_0.8-0.9	0.8-0.9	22/03/2022	2	Black (N 2.5/)	Medium Clay	69	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DS07	DS07_1.1-1.2	1.1-1.2	22/03/2022	2	Black (N 2.5/)	Medium Heavy Clay	75	-	-	-	-	-	-	-	-		-	-	-	-	-	-

											Ph	ysical P	arameters									
	ı			Emerson Class Number	Laboratory Munsell Colour	· · Texture	ь % Clay (<2 µm)	. % Sik (2-60 µm)	Sand (0.06-2.00 mm)	- % Gravel (>2mm)	Cobbles (>6cm)	1 180 mm	#1 20hm	+19.0mm	42.36mm	шпоос+ %	1 +37.5mm	4.75mm	. % +425µm	шпоо9+ % 1	+75.0mm	шп <u>27+</u> %
Location	Field ID	Sample Depth	Date Time										1		1							
DS07	DS07_1.5-1.6	1.5-1.6	22/03/2022	2	Very Dark Gray (N 3/)	Medium Clay	74	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DS07	DS07_1.9-2.0	1.9-2	22/03/2022	2	Very Dark Gray (N 3/)	Medium Heavy Clay	75	-	-		-	-	-	-	-	-		-	-		-	-
SS01	SS01_0.0-0.3	0-0.3	23/03/2022	3	Black (N 2.5/)	Medium Heavy Clay	54	23	20	3	<1	4	18	<1	3	11	<1	2	8	6	<1	22
SS02	SS02_0.0-0.3	0-0.3	23/03/2022	3	Black (N 2.5/)	Medium Clay	52	27	20	1	<1	1	15	<1	<1	8	<1	<1	5	4	<1	21
SS03	SS03_0.0-0.3	0-0.3	23/03/2022	2	Very Dark Gray (5Y 3/1)	Medium Heavy Clay	56	25	19	<1	<1	<1	14	<1	<1	7	<1	<1	5	3	<1	18
SS04	SS04_0.0-0.3	0-0.3	23/03/2022	4	Very Dark Gray (5Y 3/1)	Medium Heavy Clay	68	21	11	<1	<1	<1	7	<1	<1	3	<1	<1	2	1	<1	10
	Statistical Summary						•															
	Number of Results			25			25	7	7	5	0	5	7	0	2	7	0	1	7	7	0	7
	Maximum Concentrat			4			82	27	26	3	0	4	19	0	3	12	0	2	8	6	0	26
	Minimum Concentrati			2			49	21	11	1	0	11	7	0	1	3	0	2	2	1	0	10
	Average Concentration			2.6			66.3	24.6	19.4	1.6		2.2	15.1		2.0	8.9		2.0	6.0	4.1	0	19.9
	Median Concentration	1		2			68	25	20	1		2	15		2	10		2	7	5	0	21
	Standard Deviation			0.866	1	1	10.506	2.1492	4.39155	0.8944		1.0954	4.05909		1.4142	3.132		l	2.1602	1.6762	0	4.94734

			•				Chemi	cal Param	neters							Nu	trients						
				+9.5mm	pH (Lab)	Electrical conductivity (lab)	Moisture Content	Bulk Density	Moisture content at FC (10 kPa)	Moisture content at WP (1500 kPa)	Available Water %	Bicarbonate Ext. P (Colwell)	Colwell P (Biotrack)	Colwell P Assessment	Phosphate Buffer Index (PBI)	PBI Ranking	Organic Matter	OrganicCarbon	Total Kjeldahl Nitrogen	Nitrite + Nitrate as N	Total Nitrogen (as N)	Calcium	Magnesium
	1			%	pH Units	μS/cm	%	Kg/L	%	%	%	mg/kg	mg p/kg	-	-	-	%	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location	Field ID	Sample_Depth	Date_Time	1	0.1	1	0.1	0.1	-	-	-	5		-	-	-	0.5	1.5	20	0.1	20	10	10
DS01	DS01_0.0-0.1	0-0.1	23/03/2022	<1	7.7	74	13.6	1.0	45.6	19.8	25.8	67	90	Medium- high	60	Very Low	2.5	1.4	1230	19.6	1250	30	<10
DS01	DS01_0.2-0.3	0.2-0.3	23/03/2022	-	8.6	220	23.7	1.0	46.2	23.1	23.1	<5	12	Very Low	102	Low	2.5	1.4	960	32.8	990	60	20
DS01	DS01_0.5-0.6	0.5-0.6	23/03/2022	ı	8.7	369	23.3	1.1	43.3	22.0	21.3	<5	<2	Very Low	93	Low	2	1.2	670	60.8	730	40	20
DS01	DS01_0.8-0.9	0.8-0.9	23/03/2022	-	8.3	171	21.7	-	-	-	-	-	-	-	-		2.9	1.7	1310	20.2	1330	80	20
DS01	DS01_1.1-1.2	1.1-1.2	23/03/2022	ı	8.6	559	21.1	1.1	43.0	23.0	20.0	8	<2	Very Low	81	Low	1.6	1	760	50.4	810	60	30
DS01	DS01_1.5-1.6	1.5-1.6	23/03/2022	-	8.4	353	20.1	-	-	-	-	-	-	-	-		2.6	1.5	930	28.3	960	90	30
DS01	DS01_1.9-2.0	1.9-2	23/03/2022	-	8.3	1170	21.9	1.0	47.9	23.9	24.0	<5	<2	Very Low	55	Very Low	1.5	0.8	90	23.1	110	100	90
DS04	DS04_0.0-0.1	0-0.1	23/03/2022	<1	6.8	72	20	1.0	46.6	28.0	18.6	58	78	Medium- high	101	Low	2.6	1.5	690	19.9	710	<10	<10
DS04	DS04_0.2-0.3	0.2-0.3	23/03/2022	-	7.3	83	25.7	1.0	49.7	26.7	23.0	30	50	Moderate	93	Low	2.2	1.3	700	2.6	700	<10	<10
DS04	DS04_0.5-0.6	0.5-0.6	23/03/2022	-	7.7	512	27.8	1.0	54.1	31.8	22.3	25	28	Low	68	Very Low	2.4	1.4	740	3	740	20	20
DS04	DS04_0.8-0.9	0.8-0.9	23/03/2022	1	8.1	694	26.8	-	-	-	-	-	-	-	-		2	1.1	210	17	230	50	50
DS04	DS04_1.1-1.2	1.1-1.2	23/03/2022	-	8	825	26.2	1.0	49.0	31.1	17.9	34	23	Low	101	Low	1.2	0.7	560	4.9	560	90	80
DS04	DS04_1.5-1.6	1.5-1.6	23/03/2022	-	8.1	1020	26.5	-	-	-	-	-	-	-	-		1.3	0.8	230	5.4	240	130	120
DS04	DS04_1.9-2.0	1.9-2	23/03/2022	-	8.3	927	22	1.0	52.8	31.3	21.5	8	<2	Very Low	93	Low	1	0.6	100	1.1	100	80	80
DS07	DS07_0.0-0.1	0-0.1	22/03/2022	<1	6.9	47	26.9	1.1	42.9	17.6	25.3	11	42	Moderate	74	Low	1.6	1	460	6.6	470	<10	<10
DS07	DS07_0.2-0.3	0.2-0.3	22/03/2022	-	6.5	190	24.1	1.1	46.3	22.7	23.6	<5	<2	Very Low	75	Low	1.9	1.1	440	21.3	460	<10	<10
DS07	DS07_0.5-0.6	0.5-0.6	22/03/2022	-	6.8	361	21.8	1.1	47.3	22.7	24.6	<5	<2	Very Low	55	Very Low	1.2	0.7	360	37	400	<10	<10
DS07	DS07_0.8-0.9	0.8-0.9	22/03/2022	-	7.7	583	22.2	-	-	-	-	-	-	-	-		1.4	0.8	280	30.4	310	30	30
DS07	DS07_1.1-1.2	1.1-1.2	22/03/2022	-	7.4	525	20.4	1.1	47.2	26.6	20.6	<5	<2	Very Low	64	Very Low	1.6	0.9	270	29.2	300	30	30

							Chemi	cal Param	neters							Nu	trients						
				+9.5mm	рн (Lab)	Electrical conductivity (lab)	Moisture Content	Bulk Density	Moisture content at FC (10 kPa)	Moisture content at WP (1500 kPa)	Available Water %	Bicarbonate Ext. P (Colwell)	Colwell P (Biotrack)	Colwell P Assessment	Phosphate Buffer Index (PBI)	PBI Ranking	Organic Matter	OrganicCarbon	Total Kjeldahl Nitrogen	Nitrite + Nitrate as N	Total Nitrogen (as N)	Calcium	Magnesium
				%	pH Units	μS/cm	%	Kg/L	%	%	%	mg/kg	mg p/kg	-	-	-	%	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	F:	0 1 0 1	D	1	0.1	1	0.1	0.1	-	-	-	5		-	-	-	0.5	1.5	20	0.1	20	10	10
Location		Sample_Depth							1					1									
DS07	DS07_1.5-1.6	1.5-1.6	22/03/2022	-	8.2	741	19.8	-	-	-	-	-	-	-	-		<0.5	0.5	130	17.9	150	50	60
DS07	DS07_1.9-2.0	1.9-2	22/03/2022	-	8.4	850	22	1.1	50.5	25.1	25.4	<5	<2	Very Low	75	Low	<0.5	0.5	90	6	100	60	70
SS01	SS01_0.0-0.3	0-0.3	23/03/2022	<1	7.8	52	20.5	1.1	44.9	20.6	24.3	70	32	Moderate	90	Low	1.6	1	920	7.9	930	<10	<10
SS02	SS02_0.0-0.3	0-0.3	23/03/2022	<1	8.8	162	19.4	1.1	44.2	20.3	23.9	39	20	Low	85	Low	1.8	1	1310	38	1350	20	<10
SS03	SS03_0.0-0.3	0-0.3	23/03/2022	<1	7	63	19.1	1.1	44.3	18.4	25.9	17	16	Very Low	90	Low	1.6	0.9	430	17.3	450	<10	<10
SS04	SS04_0.0-0.3	0-0.3	23/03/2022	<1	8.3	100	27.9	1.0	50.6	27.9	22.7	24	21	Low	128	Low	1.7	1	540	5.9	540	10	<10
	Statistical Summar	ry	1																1				
	Number of Results			0	25	25	25	19	19	19	19	12	11	0	19	0	23	25	25	25	25	18	15
	Maximum Concentra			0	8.8	1170	27.9	1.1	54.1	31.8	25.9	70	90	0	128	0	2.9	1.7	1310	60.8	1350	130	120
	Minimum Concentra			0	6.5	47	13.6	1	42.9	17.6	17.9	8	12	0	55	0	1	0.5	90	1.1	100	10	20
	Average Concentrat				7.9	428.9	22.6	1.1	47.2	24.3	22.8	32.6	37.5		83.3		1.9	1.0	576.4	20.3	596.8	57.2	50.0
	Median Concentration	on			8.1	361	22	1.1	46.6	23.1	23.1	27.5	28		85		1.7	1	540	19.6	540	55	30
	Standard Deviation				0.6663	345.254	3.36427	0.0513	3.2504	4.302	2.3457	22.0102	25.68		18.753		0.5256	0.3275	377.9647	15.50365	381.791	32.5044	31.6228

				Ma	jor lons					Ex	changeab	le Catio	ns					Metals		
				Potassium	Sodium	Chloride	Sulfate as SO4	Calcium/Magnesiu m Ratio	Cation Exchange Capacity	Exchangeable Calcium	Exchangeable Magnesium	Exchangeable Potassium	Exchangeable Sodium	Exchangeable Sodium Percent	Magnesium/Potas sium Ratio	Boron	Copper	Iron	Manganese	Zinc
	1			mg/kg	mg/kg	mg/kg	mg/kg	-	meq/100g	meq/100g	meq/100g	meq/100	meq/100	%	-	mg/kg	mg/kg	mg/kg	mg/kg 1	mg/kg
Location	Field ID	Sample_Depth	Date_Time	10	10	10	10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	1	1	1	1
DS01	DS01_0.0-0.1	0-0.1	23/03/2022	20	30	<10	10	4.4	31.6	24.5	5.6	1.2	0.2	0.7	4.4	0.3	<1	9.23	10.4	1.14
DS01	DS01_0.2-0.3	0.2-0.3	23/03/2022	<10	200	30	100	2.7	36.8	25.6	9.4	0.2	1.5	4.1	39.7	0.4	<1	9.98	4.39	<1
DS01	DS01_0.5-0.6	0.5-0.6	23/03/2022	<10	380	100	180	1.4	35.6	18.5	13	0.6	3.4	9.7	20.4	1	<1	12.6	6.67	<1
DS01	DS01_0.8-0.9	0.8-0.9	23/03/2022	10	80	<10	30	3.8	31.1	23.6	6.2	0.8	0.5	1.7	8	-	-	-	-	-
DS01	DS01_1.1-1.2	1.1-1.2	23/03/2022	<10	560	340	440	1.4	35.3	17.9	13.1	0.4	3.9	11.1	34.7	0.9	<1	8.74	5.74	<1
DS01	DS01_1.5-1.6	1.5-1.6	23/03/2022	<10	260	220	170	1.8	34.2	20.1	10.8	0.5	2.7	8	21.9	-	-	-	-	-
DS01	DS01_1.9-2.0	1.9-2	23/03/2022	<10	1130	1780	680	0.9	37.8	15.6	16.9	0.4	5	13.2	47.2	0.6	<1	5.76	4.08	<1
DS04	DS04_0.0-0.1	0-0.1	23/03/2022	10	70	20	40	1.3	33.8	18	13.4	1.4	1.1	3.1	9.8	0.2	1.72	50.9	21.3	<1
DS04	DS04_0.2-0.3	0.2-0.3	23/03/2022	<10	100	30	130	1.2	36.4	18.1	15.4	0.8	2.1	5.8	20	0.3	1.47	23.6	17.3	<1
DS04	DS04_0.5-0.6	0.5-0.6	23/03/2022	<10	570	400	730	1	42.3	18.7	18	1	4.5	10.7	17.7	0.6	1.57	13	18.6	<1
DS04	DS04_0.8-0.9	0.8-0.9	23/03/2022	<10	710	690	880	1	42.2	18.1	18.4	0.9	4.7	11.2	19.7	-	-	-	-	-
DS04	DS04_1.1-1.2	1.1-1.2	23/03/2022	<10	810	1100	870	1.1	40.3	18.3	17	1.3	3.6	9	12.8	0.8	1.26	23.5	8.87	<1
DS04	DS04_1.5-1.6	1.5-1.6	23/03/2022	<10	960	1400	1020	0.9	44.6	18.5	20.1	1.3	4.6	10.4	15.6	-	-	-	-	-
DS04	DS04_1.9-2.0	1.9-2	23/03/2022	<10	860	1050	840	0.8	43.4	17.1	20.2	1.3	4.8	11.1	15.8	0.8	1.04	11.9	4.12	<1
DS07	DS07_0.0-0.1	0-0.1	22/03/2022	<10	50	20	20	1.2	30.3	15.1	13	0.5	1.6	5.3	24.1	<0.2	1.38	19.9	11.1	<1
DS07	DS07_0.2-0.3	0.2-0.3	22/03/2022	<10	200	160	80	1	32.8	14.6	14.7	0.4	3	9.2	34.7	<0.2	2	38.8	2.88	<1
DS07	DS07_0.5-0.6	0.5-0.6	22/03/2022	<10	350	380	160	0.8	32.3	13.2	16.5	0.4	2.1	6.4	42.3	0.2	1.61	17.9	17.6	<1
DS07	DS07_0.8-0.9	0.8-0.9	22/03/2022	<10	590	700	410	0.8	34.6	13.8	16.3	0.5	4	11.5	35.1	-	-	-	-	-
DS07	DS07_1.1-1.2	1.1-1.2	22/03/2022	<10	540	660	330	0.8	35.6	14.2	16.9	0.5	4	11.1	31.4	0.5	<1	6.79	3.7	<1
								l												

				Ma	jor lons					Ex	changeab	le Catio	ns					Metals		
				Potassium	Sodium	Chloride	Sulfate as SO4	Calcium/Magnesiu m Ratio	Cation Exchange Capacity	Exchangeable Calcium	Exchangeable Magnesium	Exchangeable Potassium	Exchangeable Sodium	Exchangeable Sodium Percent	Magnesium/Potas sium Ratio	Boron	Copper	Iron	Manganese	Zinc
				mg/kg	mg/kg	mg/kg	mg/kg		meq/100g	meq/100g	meq/100g	neq/100	neq/100g	%	-	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				10	10	10	10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	1	1	1	1
Location		Sample_Depth	Date_Time																	
DS07	DS07_1.5-1.6	1.5-1.6	22/03/2022	<10	710	930	500	0.8	35.8	13.5	17.8	0.6	4	11	32.2	-	-	-	-	-
DS07	DS07_1.9-2.0	1.9-2	22/03/2022	<10	820	1200	450	0.7	38.9	14.1	19.7	0.7	4.4	11.3	29.7	0.6	<1	8.57	3.16	<1
SS01	SS01_0.0-0.3	0-0.3	23/03/2022	<10	50	<10	10	1.8	29.1	17.6	9.7	1.4	0.4	1.6	6.9	<0.2	1.32	23.6	14.7	<1
SS02	SS02_0.0-0.3	0-0.3	23/03/2022	10	170	30	30	4	31.4	22.9	5.7	1.3	1.3	4.2	4.3	0.4	<1	7.92	4.79	<1
SS03	SS03_0.0-0.3	0-0.3	23/03/2022	<10	70	40	10	1.4	30.7	16.3	11.8	0.6	2	6.5	20	0.3	1.28	19.3	23	<1
SS04	SS04_0.0-0.3	0-0.3	23/03/2022	<10	130	<10	10	1.3	38.5	20.7	15.5	1	1.3	3.4	15.2	0.3	1.25	19.3	22.5	<1
	Statistical Summary	,		l .	l	1	1	l	l	l .	1	l			I			l .	1	
	Number of Results	•		4	25	21	25	25	25	25	25	25	25	25	25	16	11	19	19	1
	Maximum Concentrat			20	1130	1780	1020	4.4	44.6	25.6	20.2	1.4	5	13.2	47.2	1	2	50.9	23	1.14
	Minimum Concentrati			10	30	20	10	0.7	29.1	13.2	5.6	0.2	0.2	0.7	4.3	0.2	1.04	5.76	2.88	1.14
	Average Concentration			12.5	416.0	537.1	325.2	1.5	35.8	17.9	14.2	0.8	2.8	7.7	22.5	0.5	1.4	17.4	10.8	1.1
	Median Concentration	n		10	350	380	170	1.2	35.6	18	15.4	0.7	3	9	20	0.45	1.38	13	8.87	1.14
	Standard Deviation			5	336.5883	529.0382	333.9301	1.0519	4.33366	3.46579	4.36439	0.3797	1.5499	3.76	12.1515	0.2553	0.2665	11.531	7.24816	#DIV/0!

Appendix C

Laboratory Reports

PROJECT:			ALS QUOTE NO.:	BN/081/21 V2		COC SEQ	JENCE	NUMBER	(Circle)	Free ice / frozen ice brick* - receipt?
PROJECT NUMBER: 6	60651803		TASK NUMBER: 60	551803 5.2	coc:	1 2	3	4	5 6	7 Random Sample Tembe
PROJECT MANAGER: N	Navjot Kaur	CONTACT P	H: 0448901428		OF:	1 2	3	4	5 6	7 Other comment
SAMPLER:		SAMPLER N	IOBILE: 0448901428	RELINQUISHED BY:	RECI	EIVED BY:				RELINQUISHED BY:
COC emailed to ALS? (YES / NO) Yes	EDD FORM	AT (or default):							
Email Reports to (will def	fault to PM if no other addresses are listed):			DATE/TIME:	DATE	E/TIME:				DATE/TIME:
Email Invoice to (will defa	ault to PM if no other addresses are listed):									

CONTAINER INFORMATION

Plastic bags and Glass jars

om Sample Tembe Environmental Division
Brisbane

ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite

Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle require

1

1

1

1

1

1

1

1

1

1

1

Work Order Reference EB2208583

Telephone : + 61-7-3243 722

Comments on likely contaminant levels.

	LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	Hydrometer EA150H-	Hydrometer EA150H-C, EA058	AG - 1, NT-1S and NT-2S	ED005, ED006, EA006	EP004, EK062,	EK080/EK081, ED091, ED092	Moisture content at Field capacity (0.3 bar) and At Wilting Point (15 bar)	Phosphorus Buffering Index	continents of mixely contaminant sevens, dilutions, or samples requiring specific QC analysis etc.
	. 1	D\$07_0.0-0.1	22/03/2022	s	Plastic bags and Glass jars	3	1	1	1	1	1	1	1	1	
	Σ	DS07_0.2-0.3	22/03/2022	s	Plastic bags and Glass jars	3		1	1	1	1	1	1	1	
	3	DS07_0.5-0.6	22/03/2022	s	Plastic bags and Glass jars	3		1	1	1	1	1	1	1	
•	4	DS07_0.8-0.9	22/03/2022	s	Plastic bags and Glass jars	3		1	1	1	1				
	J	DS07_1.1-1.2	22/03/2022	S	Plastic bags and Glass jars	3		1	1	1	1	1	1	1	
	Ç	DS07_1.5-1.6	22/03/2022	S	Plastic bags and Glass jars	3		1	1	1	1				
	٦	DS07_1.9-2.0	22/03/2022	s	Plastic bags and Glass jars	3		1	1	1	1	1	1	1	
	8	DS01_0.0-0.1	23/03/2022	S	Plastic bags and Glass jars	3	1	1	1	1	1	1	1	1	
	q	DS01_0.2-0.3	23/03/2022	S	Plastic bags and Glass jars	3		1	1	1	1	1	1	1	
	10	DS01_0.5-0.6	23/03/2022	S	Plastic bags and Glass jars	3		1	1	1	1	1	1	1	
	1.1	DS01_0.8-0.9	23/03/2022	s	Plastic bags and Glass jars	3		1	1	1	1				
				1 1		1		1	1	1	1	!	1	I	1

17

13

14

15

16

17

18

DS01_1.1-1.2

DS01_1.5-1.6

DS01_1.9-2.0

DS04_0.0-0.1

DS04_0.2-0.3

DS04_0.5-0.6

DS04_0.8-0.9

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALS USE ONLY

SAMPLE DETAILS

MATRIX: Solid(S) Water(W)

23/03/2022

23/03/2022

23/03/2022

23/03/2022

23/03/2022

23/03/2022

23/03/2022

S

s

s

s

s

s

S

3

3

3

3

3

3

3

1

1

1

19	DS04_1.1-1.2	23/03/2022	s	Plastic bags and Glass jars	3		1	1	1	1	1	1	1	
ಒ	DS04_1.5-1.6	23/03/2022	s	Plastic bags and Glass jars	3		1	1	1	1				
21	DS04_1.9-2.0	23/03/2022	s	Plastic bags and Glass jars	3		1	1	1	1	1	1	1	
22	SS01_0.0-0.3	23/03/2022	s	Plastic bags and Glass jars	3	1	1	1	1	1	1	1	1	
2.3	SS02_0.0-0.3	23/03/2022	S	Plastic bags and Glass jars	3	1	1	1	1	1	1	1	1	
24	SS03_0.0-0.3	23/03/2022	s	Plastic bags and Glass jars	3	1	1	1	1	1	1	1	1	
7.5	SS04_0.0-0.3	23/03/2022	s	Plastic bags and Glass jars	3	1	1	1	1	1	1	1	1	
24	DS03_0.0-0.1	22/03/2022	s	Plastic bags and Glass jars	1									on Hold
				TOTAL	i.	6	18	18	18	18	14	14	14	

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; AP - Airfreight Unpreserved Plastic: V = VOA Vial HCI Preserved; VS = VOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; V = VIOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; V = VIOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; V = VIOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; V = VIOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; V = VIOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; V = VIOA Vial Sodium Bisulphate Preserved Plastic; V = VIOA Vial Sodium Bisulphate Preserved Plastic

A -	
A	
(ALS)	

ENFM (204/6)

CHAIN OF CUSTODY

ALS Laboratory: please tick >

□ Sydney: 277 Woodpark Rd, Smithfield NSW 2176
Ph: 02 8784 8555 E:samples.sydney@alsenviro.com
□ Newcastle: 5 Rosegum Rd, Warabrook NSW 2304

☐ Brisbane: 32 Shand St, Stafford QLD 4053 Ph:07 3243 7222 E:samples.brisbane@alsenviro.com □ Newcastle: 5 Rosegum Rd, Warabrook NSW 2304
Ph:02 4968 9433 E:samples.newcastle@alsenviro.com
Ph:07 4796 0600 E: townsville.environmental@alsenviro.com

☐ Melbourne: 2-4 Westall Rd, Springvale VIC 3171 Ph:03 8549 9600 E: samples.melbourne@alsenviro.com ☐ Adelaide: 2-1 Burma Rd, Pooraka SA 5095 Ph: 08 8359 0890 E:adelaide@alsenviro.com

☐ Perth: 10 Hod Way, Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsenviro.com

Launceston: 27 Wellington St, Launceston TAS 7250 Ph: 03 6331 2158 E; launceston@alsenviro.com

CLIENT: FOR LABORATORY USE ONLY (Circle) AECOM TURNAROUND REQUIREMENTS: ☐ Standard TAT (List due date): (Standard TAT may be longer for some tests OFFICE: ☐ Non Standard or urgent TAT (List due date): Custody Seal Intact? e.g., Ultra Trace Organics)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD Laboratory : Environmental Division Brisbane

Contact : MS NAVJOT KAUR Contact : Carsten Emrich

Address : PO BOX 1307 Address : 2 Byth Street Stafford QLD Australia

4053

FORTITUDE VALLEY QLD, AUSTRALIA

4006

Telephone : +61 07 3553 2000 Telephone : +61 7 3552 8616
Facsimile : +61 07 3553 2050 Facsimile : +61-7-3243 7218

Project : 60651803 5.2 Page : 1 of 4

Order number : 60651803 5.2 Quote number : EB2021AECOMAU0002 (BN/081/21

V2)

C-O-C number ; ---- QC Level ; NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : NAVJOT KAUR

Dates

E-mail

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Not Available

No. of coolers/boxes : 11 Temperature : 29.0°C, 29.3°C, AMBIENT

Receipt Detail : MEDIUM ESKY/BAGS No. of samples received / analysed : 26 / 25

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Moisture content at Field Capacity (0.3 bar), Moisture content at Wilting Point (15 bar) and Phosphorous Buffering Index testing will be subcontracted to Biotrack. Subcontracting laboratory will advise due date for results
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.

: 30-Mar-2022 Issue Date

Page

2 of 4 EB2208583 Amendment 0 Work Order

Client : AECOM AUSTRALIA PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determintasks, that are included in the sampling default 00:00 on is provided, the laboratory and component Matrix: SOIL	may contain ad ation of moisture uded in the package. time is provided, the date of samplin sampling date wi displayed in bra	the sampling time will g. If no sampling date ll be assumed by the ckets without a time	SOIL - AG-1 EB Only Agricultural Soil Suite 1 EB Only	SOIL - EA055-103 Moisture Content	SOIL - EA058 Emerson Aggregate Test	SOIL - EA150H/EA152 Particle Sizing with Hydrometer + Soil Particle	SOIL - EK062G (Solids) Total Nitrogen as N (TKN + NOx) By Discrete	SOIL - NT-1S Major Cations (Ca, Mg, Na, K)	SOIL - NT-2S Major Anions (Cl, SO4)
Laboratory sample ID	Sampling date / time	Sample ID	SOIL A	OIL	OIL	OIL	Oll	OIL	OIL.
EB2208583-001	22-Mar-2022 00:00	DS07_0.0-0.1	√ A	<i>√</i>	√	√	√	<i>√</i>	<i>(</i>) ≥
EB2208583-002	22-Mar-2022 00:00	DS07_0.2-0.3	1	1	1		1	✓	1
EB2208583-003	22-Mar-2022 00:00	DS07_0.5-0.6	1	1	1		1	✓	1
EB2208583-004	22-Mar-2022 00:00	DS07_0.8-0.9	1	1	1		1	✓	✓
EB2208583-005	22-Mar-2022 00:00	DS07_1.1-1.2	1	1	1		1	✓	✓
EB2208583-006	22-Mar-2022 00:00	DS07_1.5-1.6	1	✓	1		1	1	✓
EB2208583-007	22-Mar-2022 00:00	DS07_1.9-2.0	1	1	1		✓	1	✓
EB2208583-008	23-Mar-2022 00:00	DS01_0.0-0.1	1	1	1	1	✓	✓	1
EB2208583-009	23-Mar-2022 00:00	DS01_0.2-0.3	✓	1	1		✓	✓	✓
EB2208583-010	23-Mar-2022 00:00	DS01_0.5-0.6	1	1	1		✓	✓	✓
EB2208583-011	23-Mar-2022 00:00	DS01_0.8-0.9	✓	✓	✓		✓	✓	✓
EB2208583-012	23-Mar-2022 00:00	DS01_1.1-1.2	1	✓	1		1	✓	✓
EB2208583-013	23-Mar-2022 00:00	DS01_1.5-1.6	✓	✓	✓		✓	✓	✓
EB2208583-014	23-Mar-2022 00:00	DS01_1.9-2.0	1	✓	✓		✓	✓	✓
EB2208583-015	23-Mar-2022 00:00	DS04_0.0-0.1	✓	✓	✓	✓	✓	✓	✓
EB2208583-016	23-Mar-2022 00:00	DS04_0.2-0.3	✓	1	1		✓	✓	✓
EB2208583-017	23-Mar-2022 00:00	DS04_0.5-0.6	✓	✓	1		✓	✓	✓
EB2208583-018	23-Mar-2022 00:00	DS04_0.8-0.9	✓	✓	1		✓	✓	✓
EB2208583-019	23-Mar-2022 00:00	DS04_1.1-1.2	✓	✓	1		✓	✓	✓
EB2208583-020	23-Mar-2022 00:00	DS04_1.5-1.6	✓	1	1		✓	✓	✓
EB2208583-021	23-Mar-2022 00:00	DS04_1.9-2.0	✓	✓	✓		✓	✓	✓
EB2208583-022	23-Mar-2022 00:00	SS01_0.0-0.3	✓	✓	✓	✓	✓	✓	✓
EB2208583-023	23-Mar-2022 00:00	SS02_0.0-0.3	✓	✓	✓	✓	✓	✓	✓
EB2208583-024	23-Mar-2022 00:00	SS03_0.0-0.3	✓	✓	✓	✓	✓	✓	✓
EB2208583-025	23-Mar-2022 00:00	SS04_0.0-0.3	✓	✓	✓	✓	✓	✓	✓

: 30-Mar-2022 Issue Date

Page

EB2208583-006

22-Mar-2022 00:00 DS07_1.5-1.6

3 of 4 EB2208583 Amendment 0 Work Order

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL Laboratory sample ID EB2208583-001 EB2208583-002 EB2208583-004 EB2208583-005 EB2208583-006 EB2208583-007 EB2208583-010 EB2208583-010 EB2208583-011 EB2208583-011 EB2208583-011 EB2208583-015 EB2208583-015 EB2208583-016 EB2208583-017 EB2208583-018 EB2208583-018	Sampling date / time 22-Mar-2022 00:00 22-Mar-2022 00:00 22-Mar-2022 00:00 22-Mar-2022 00:00 22-Mar-2022 00:00 22-Mar-2022 00:00 23-Mar-2022 00:00	Sample ID DS07_0.0-0.1 DS07_0.2-0.3 DS07_0.5-0.6 DS07_0.8-0.9 DS07_1.5-1.6 DS07_1.9-2.0 DS01_0.0-0.1 DS01_0.2-0.3 DS01_0.5-0.6 DS01_0.8-0.9 DS01_1.1-1.2 DS01_1.5-1.6 DS01_1.9-2.0 DS04_0.0-0.1 DS04_0.2-0.3 DS04_0.0-0.1 DS04_0.2-0.3 DS04_0.5-0.6 DS04_0.8-0.9 DS04_1.1-1.2	Image: Control of the contro	↑ ↑	★ ★ ★ ★ ★ ★ Bicarbonate Extractable P (Colwell)		<td< th=""><th></th><th>★ ★</th></td<>		★ ★
EB2208583-020	23-Mar-2022 00:00	DS04_1.5-1.6					✓		
EB2208583-021	23-Mar-2022 00:00	DS04_1.9-2.0	✓	✓	✓	✓	✓	✓	✓
EB2208583-022	23-Mar-2022 00:00	SS01_0.0-0.3	✓	✓	✓	✓	✓	✓	✓
EB2208583-023	23-Mar-2022 00:00	SS02_0.0-0.3	✓	✓	✓	✓	✓	✓	✓
EB2208583-024	23-Mar-2022 00:00	SS03_0.0-0.3	✓	✓	✓	✓	✓	✓	✓
EB2208583-025	23-Mar-2022 00:00	SS04_0.0-0.3	✓	✓	✓	✓	✓	✓	✓
Matrix: SOIL Laboratory sample ID EB2208583-002 EB2208583-003 EB2208583-004	Sampling date / time 22-Mar-2022 00:00 22-Mar-2022 00:00 22-Mar-2022 00:00	DS07_0.2-0.3 DS07_0.5-0.6	(On Hold) SOIL No analysis requested	SOIL - EA150H-C Clay Content by Hydrometer					
EB2208583-005	22-Mar-2022 00:00	DS07_0.8-0.9 DS07_1.1-1.2		√					
	==	_							

✓

: 30-Mar-2022 Issue Date

Page

4 of 4 EB2208583 Amendment 0 Work Order

			(On Hold) SOIL No analysis requested	SOIL - EA150H-C Clay Content by Hydrometer
EB2208583-007	22-Mar-2022 00:00	DS07_1.9-2.0		✓
EB2208583-009	23-Mar-2022 00:00	DS01_0.2-0.3		✓
EB2208583-010	23-Mar-2022 00:00	DS01_0.5-0.6		✓
EB2208583-011	23-Mar-2022 00:00	DS01_0.8-0.9		✓
EB2208583-012	23-Mar-2022 00:00	DS01_1.1-1.2		✓
EB2208583-013	23-Mar-2022 00:00	DS01_1.5-1.6		✓
EB2208583-014	23-Mar-2022 00:00	DS01_1.9-2.0		✓
EB2208583-016	23-Mar-2022 00:00	DS04_0.2-0.3		✓
EB2208583-017	23-Mar-2022 00:00	DS04_0.5-0.6		✓
EB2208583-018	23-Mar-2022 00:00	DS04_0.8-0.9		✓
EB2208583-019	23-Mar-2022 00:00	DS04_1.1-1.2		✓
EB2208583-020	23-Mar-2022 00:00	DS04_1.5-1.6		✓
EB2208583-021	23-Mar-2022 00:00	DS04_1.9-2.0		✓
EB2208583-026	22-Mar-2022 00:00	DS03_0.0-0.1	✓	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

- A4 - AU Tax Invoice (INV)	Email	AP_CustomerService.ANZ@aecom. com
NAVJOT KAUR		
 *AU Certificate of Analysis - NATA (COA) 	Email	navjot.kaur@aecom.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	navjot.kaur@aecom.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	navjot.kaur@aecom.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	navjot.kaur@aecom.com
- A4 - AU Tax Invoice (INV)	Email	navjot.kaur@aecom.com
- Attachment - Report (SUBCO)	Email	navjot.kaur@aecom.com
- Chain of Custody (CoC) (COC)	Email	navjot.kaur@aecom.com
- EDI Format - ENMRG (ENMRG)	Email	navjot.kaur@aecom.com
- EDI Format - ESDAT (ESDAT)	Email	navjot.kaur@aecom.com

CERTIFICATE OF ANALYSIS

Work Order : EB2208583

: AECOM AUSTRALIA PTY LTD

Contact : MS NAVJOT KAUR

Address : PO BOX 1307

FORTITUDE VALLEY QLD. AUSTRALIA 4006

Telephone : +61 07 3553 2000 Project 60651803 5.2

Order number : 60651803 5.2 C-O-C number

Sampler : NAVJOT KAUR

Site

Quote number : BN/081/21 V2

No. of samples received : 26 No. of samples analysed : 25 Page : 1 of 16

> Laboratory : Environmental Division Brisbane

Contact : Carsten Emrich

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8616 Date Samples Received : 24-Mar-2022 13:15

Date Analysis Commenced : 30-Mar-2022

Issue Date : 21-Apr-2022 17:30

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Accreditation Category Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Inorganics, Stafford, QLD

Position

Mark Hallas Senior Inorganic Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Mark Hallas Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD Page : 2 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

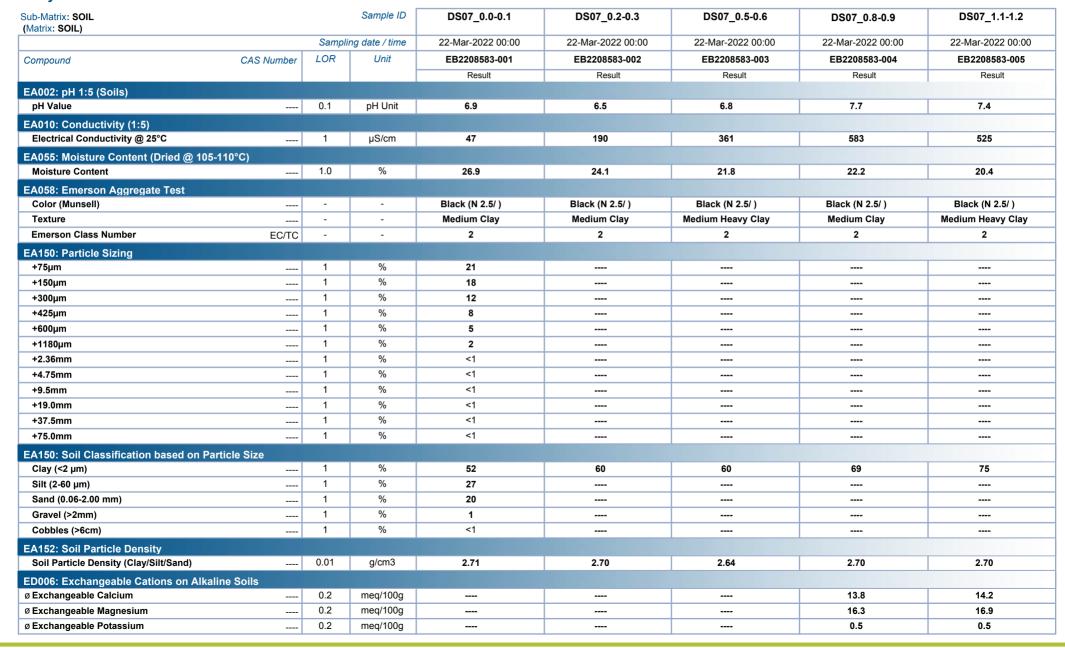
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

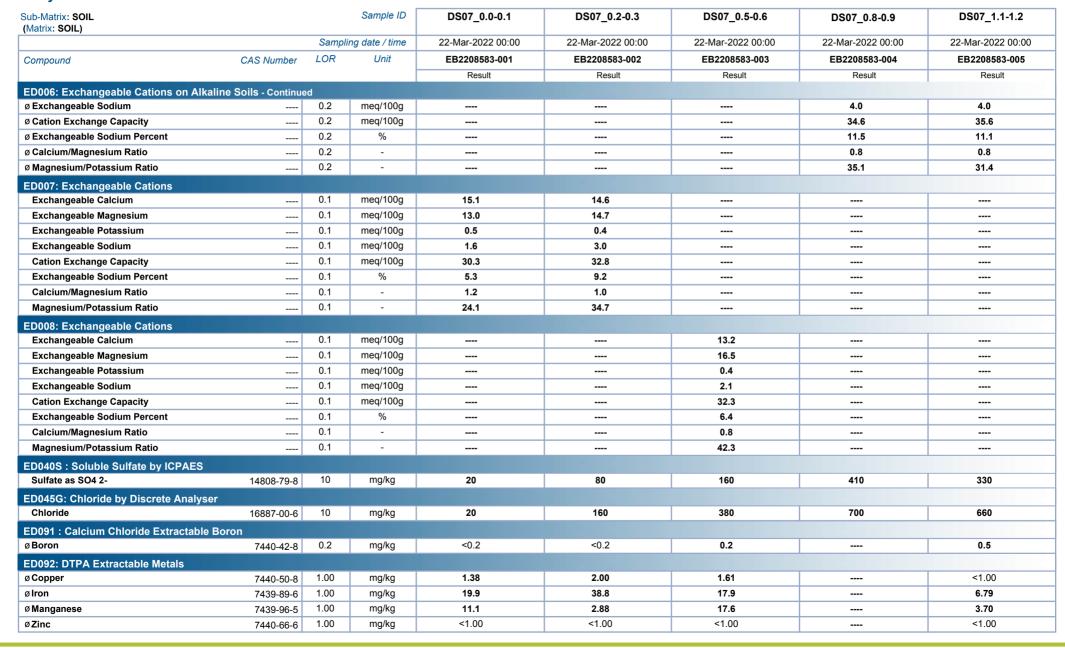

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ALS is not NATA accredited for the analysis of Exchangeable Aluminium and Exchange Acidity in soils when performed under ALS Method ED005.
- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- EK061G (Total Kjeldahl Nitrogen as N): Sample EB2208583-022 (SS01 0.0-0.3) shows poor matrix spike recovery due to sample heterogeneity. Confirmed by visual inspection.
- EK081 (Bicarbonate Extractable Phosphorus): Insufficient sample has been provided for standard analysis on sample DS07_0.2-0.3 (EB2208583-002). The limit of reporting has been adjusted accordingly.
- ED006 (Exchangeable Cations on Alkaline Soils): Unable to calculate Magnesium/Potassium Ratio results for some samples as required Exchangeable Potassium results are less than the limit of reporting.
- EA058 Emerson: V. = Very, D. = Dark, L. = Light, VD. = Very Dark
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).

Page : 3 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

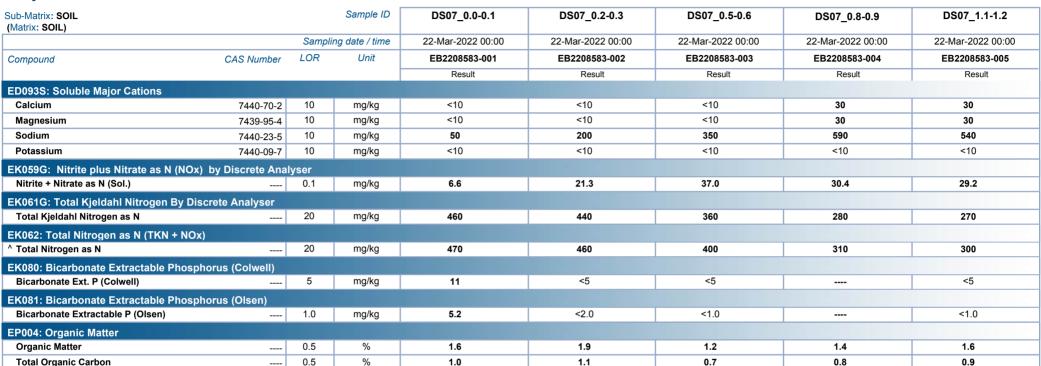
Project : 60651803 5.2



Page : 4 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

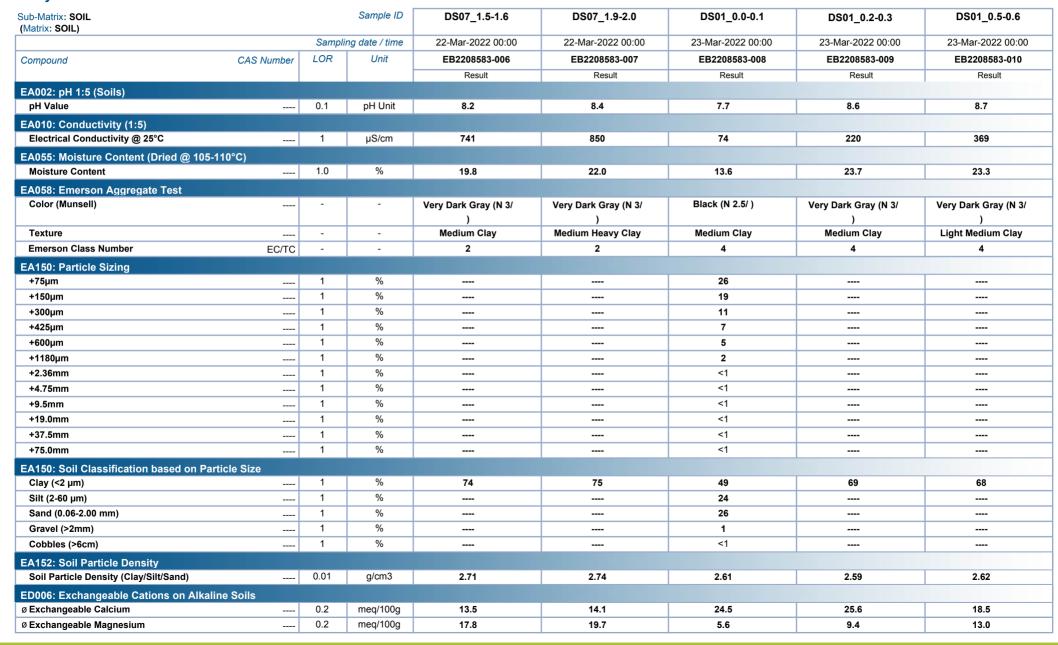
Project : 60651803 5.2



Page : 5 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

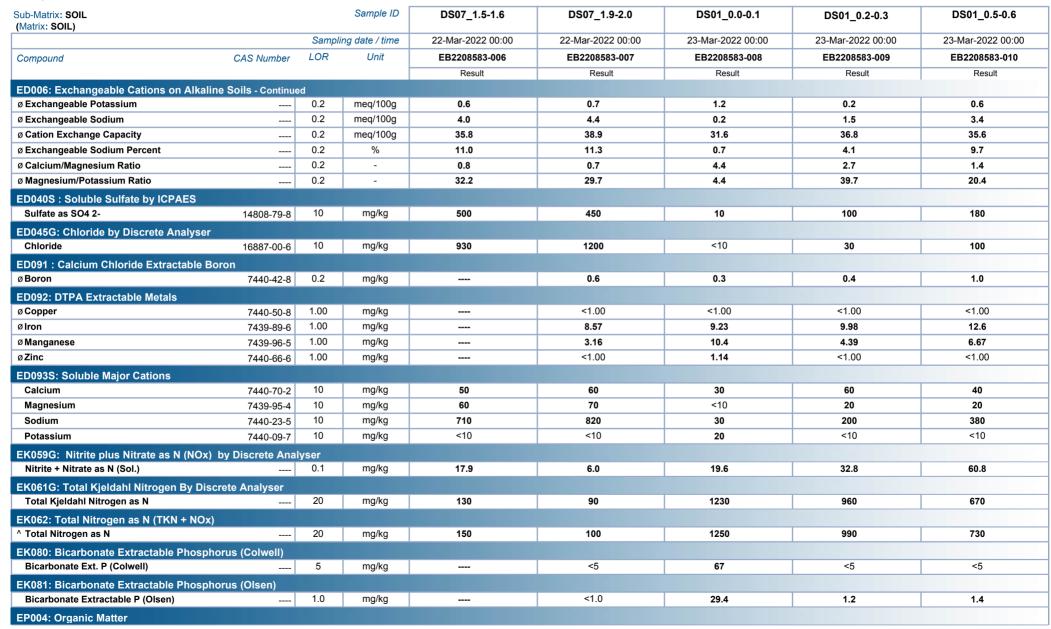
Project : 60651803 5.2



Page : 6 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2



Page : 7 of 16 Work Order : EB2208583

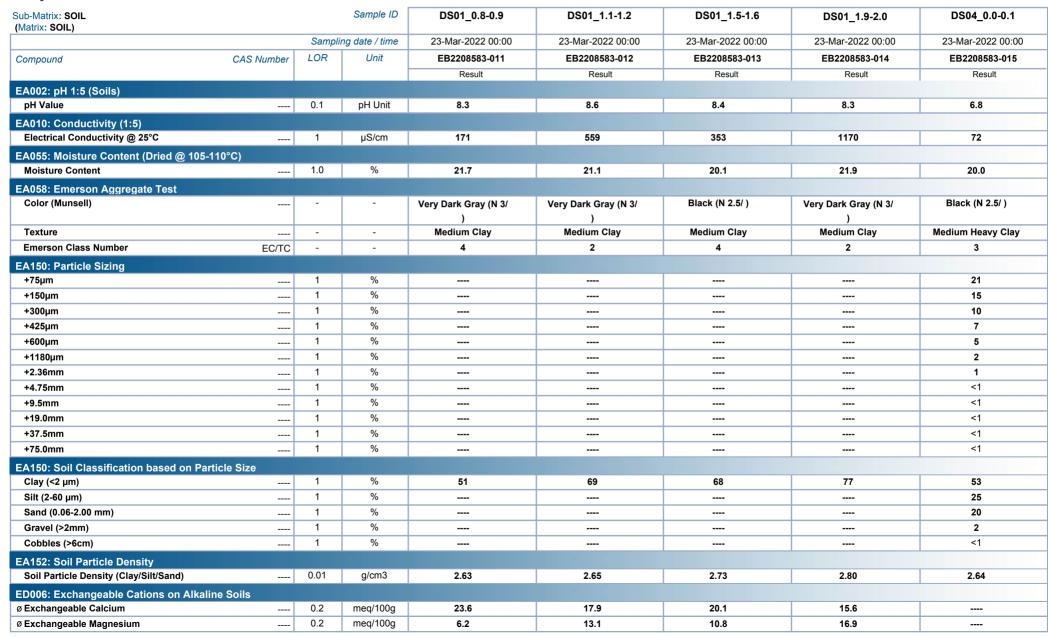
Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

Page : 8 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

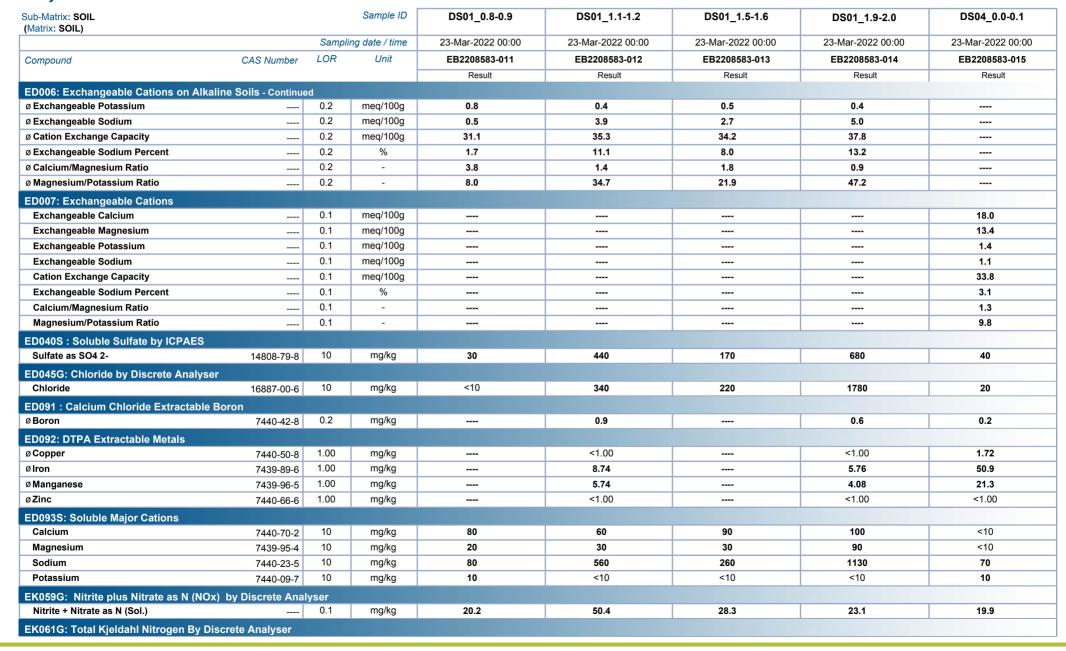
Project : 60651803 5.2



Page : 9 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

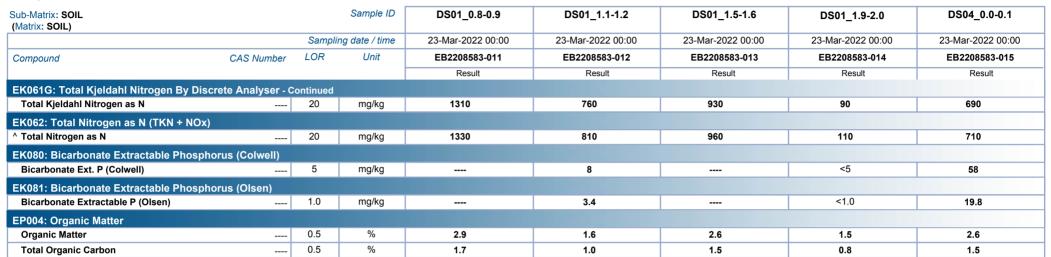
Project : 60651803 5.2



Page : 10 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

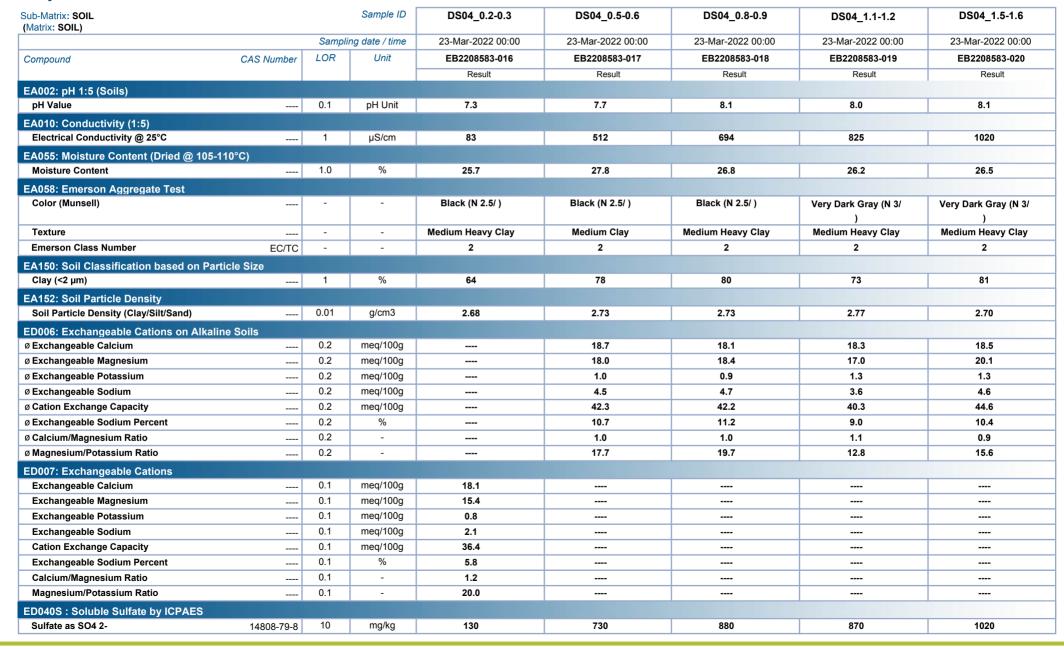
Project : 60651803 5.2



Page : 11 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2



Page : 12 of 16 Work Order : EB2208583

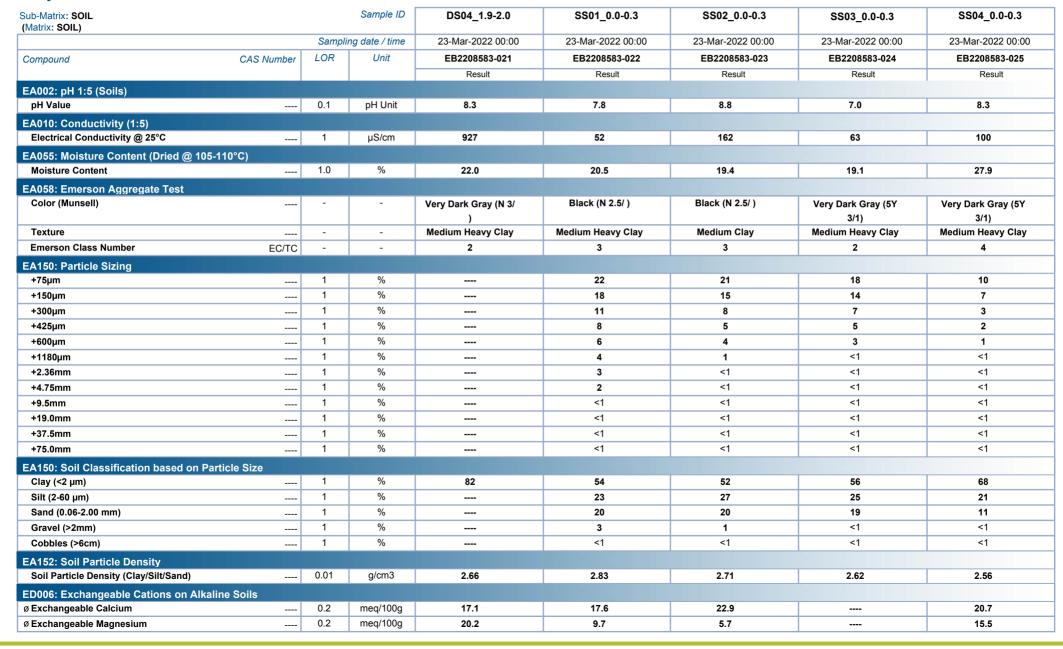
Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

Page : 13 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

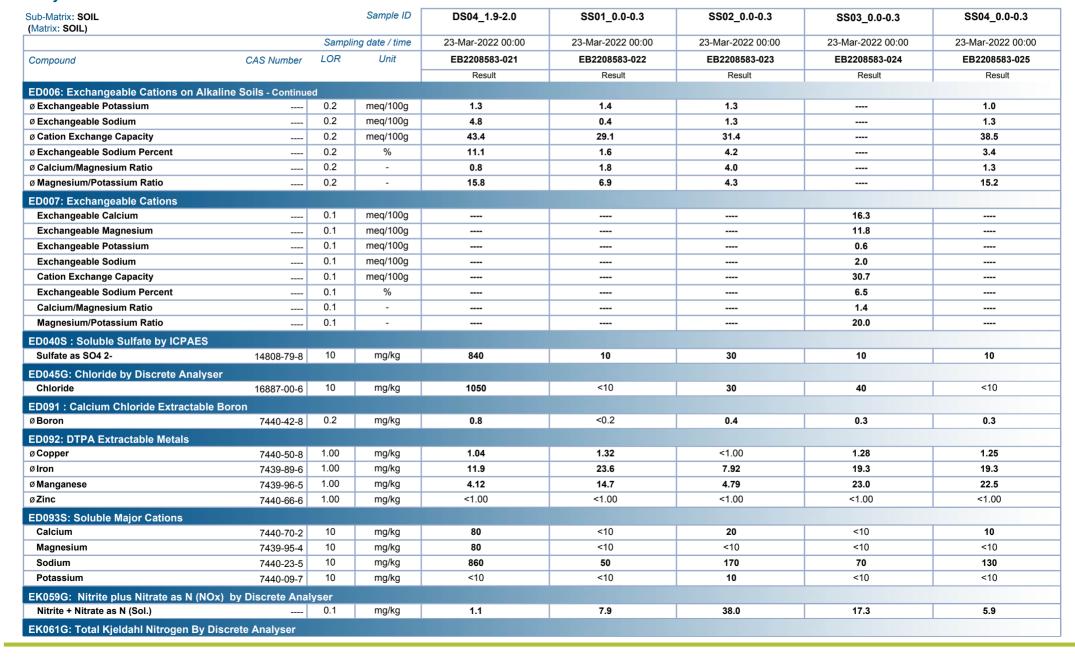


Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	DS04_0.2-0.3	DS04_0.5-0.6	DS04_0.8-0.9	DS04_1.1-1.2	DS04_1.5-1.6
·		Sampli	ng date / time	23-Mar-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2208583-016	EB2208583-017	EB2208583-018	EB2208583-019	EB2208583-020
				Result	Result	Result	Result	Result
ED045G: Chloride by Discrete Anal	yser							
Chloride	16887-00-6	10	mg/kg	30	400	690	1100	1400
ED091 : Calcium Chloride Extractal	ole Boron							
Boron	7440-42-8	0.2	mg/kg	0.3	0.6		0.8	
D092: DTPA Extractable Metals								
Copper	7440-50-8	1.00	mg/kg	1.47	1.57		1.26	
Iron	7439-89-6	1.00	mg/kg	23.6	13.0		23.5	
Manganese	7439-96-5	1.00	mg/kg	17.3	18.6		8.87	
ĕZinc	7440-66-6	1.00	mg/kg	<1.00	<1.00		<1.00	
ED093S: Soluble Major Cations								
Calcium	7440-70-2	10	mg/kg	<10	20	50	90	130
Magnesium	7439-95-4	10	mg/kg	<10	20	50	80	120
Sodium	7440-23-5	10	mg/kg	100	570	710	810	960
Potassium	7440-09-7	10	mg/kg	<10	<10	<10	<10	<10
EK059G: Nitrite plus Nitrate as N (I	NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	2.6	3.0	17.0	4.9	5.4
K061G: Total Kjeldahl Nitrogen By	y Discrete Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg	700	740	210	560	230
EK062: Total Nitrogen as N (TKN +	NOx)							
Total Nitrogen as N		20	mg/kg	700	740	230	560	240
EK080: Bicarbonate Extractable Ph	osphorus (Colwell)							
Bicarbonate Ext. P (Colwell)		5	mg/kg	30	25		34	
K081: Bicarbonate Extractable Ph	osphorus (Olsen)							
Bicarbonate Extractable P (Olsen)		1.0	mg/kg	11.2	10.5		12.6	
P004: Organic Matter								
Organic Matter		0.5	%	2.2	2.4	2.0	1.2	1.3
Total Organic Carbon		0.5	%	1.3	1.4	1.1	0.7	0.8

Page : 14 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

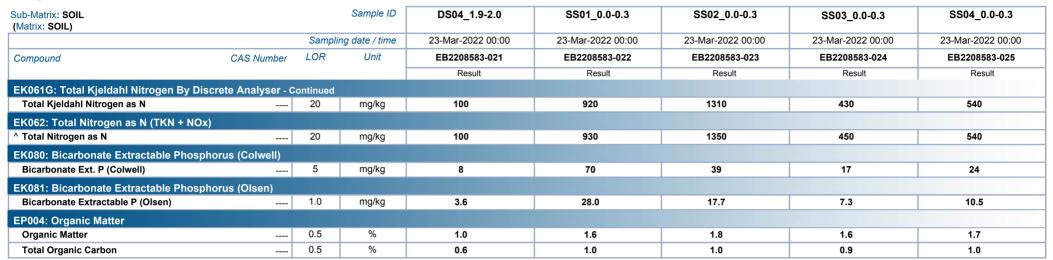
Project : 60651803 5.2



Page : 15 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2



Page : 16 of 16 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

Certificate of Analysis Signatory:

Phone: +617 3289 7179 Bio-Track Pty Ltd ABN 91 056 237 275

Test Code/Name	[75] Water Ho	olding Capacity	
Lab Reference (LR)	040422.634	Client Name	ALS
SampleID(s)	(As Listed)	Client Contact	SUB RESULTS
		Project Name	PBI + Moisture Content Testing
Report Date	19/04/2022	Job Number	ALS Batch# EB2208583
Sample Received Date	4/04/2022	Order Number	507624
Sample Disposal Date	3/06/2022	Chain of Custody	
Sample Packaging	Plastic Bag	Client Email	
Temperature	Ambient	Client Address	2 Byth St Stafford Brisbane Queensland
			7

Moisture Content at Field Capacity and Wilting Point calculated using Moisture Tension Plate. Reported density is dry density of sample at Field Capacity.

*NM = not measured

		Field Capacity			
		Bulk Density	MC% Grav. Field Capacity	MC% Grav. Wilting Point	Available Water
S#	SampleID	kg/L	10 kPa	1500 kPa	% Grav.
1	DS01_0.0-0.1	1.0	45.6	19.8	25.8
2	DS01_0.2-0.3	1.0	46.2	23.1	23.1
3	DS01_0.5-0.6	1.1	43.3	22.0	21.2
4	DS01_1.1-1.2	1.1	43.0	23.0	20.0
5	DS01_1.9-2.0	1.0	47.9	23.9	24.0
6	DS04_0.0-0.1	1.0	46.6	28.0	18.5
7	DS04_0.2-0.3	1.0	49.7	26.7	22.9
8	DS04_0.5-0.6	1.0	54.1	31.8	22.3
9	DS04_1.1-1.2	1.0	49.0	31.1	17.9
10	DS04_1.9-2.0	1.0	52.8	31.3	21.5
11	DS07_0.0-0.1	1.1	42.9	17.6	25.3
12	DS07_0.2-0.3	1.1	46.3	22.7	23.5
13	DS07_0.5-0.6	1.1	47.3	22.7	24.6
14	DS07_1.1-1.2	1.1	47.2	26.6	20.5
15	DS07_1.9-2.0	1.1	50.5	25.1	25.3
16	SS01_0.0-0.3	1.1	44.9	20.6	24.3
17	SS02_0.0-0.3	1.1	44.2	20.3	23.9
18	SS03_0.0-0.3	1.1	44.3	18.4	26.0
19	SS04_0.0-0.3	1.0	50.6	27.9	22.7

Certificate of Analysis signatory:

Phone: +617 3289 7179 Bio-Track Pty Ltd ABN 91 056 237 275

Test Code/Name	[372] Phosphoru	[372] Phosphorus-PBI-Colwell						
Lab Reference (LR)	040422.635	Client Name	ALS					
SampleID	(As Listed)	Client Contact	SUB RESULTS					
		Project Name	PBI + Moisture Content Testing					
Report Date		Job Number	ALS Batch# EB2208583					
Sample Received Date	4/04/2022	Order Number	507624					
Sample Disposal Date	3/06/2022	Chain of Custody						
Sample Packaging	Plastic Bag	Client Email	subresults.bri@alsglobal.com					
Temperature	Ambient	Client Address	2 Byth St Stafford Brisbane Queensland					

Analytical Method: As per 912b P Buffer Index - PBI +CoIP - ICPAES, Soil Chemical Methods - Australasia, Raymont & Lyons, 2001.

PBI+CoIP = $\frac{[Ps(mg P/kg) + ColwellP(mg/kg)]}{(mp P/k)} \quad \text{where:}$

c(mg P/L) Ps = freshly sorbed P (mg P/kg); and

c = final solution P concentration (mg P/L)

S#	SampleID	Phosphate Buffer Index	PERI	Colwell P mg P/kg	PERI Ranking	PBI Ranking	Colwell P Assessment	Phosphorus Environmental Risk Index
1	DS01_0.0-0.1	60	1.5	90	Moderate Leaching	Very low	Medium-high. Most plants and crops will perform well, possible problems for P sensitive species on sandy soil.	1.5
2	DS01_0.2-0.3	102	0.1	12	Minimal Leaching	Low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0.1
3	DS01_0.5-0.6	93	0.0	<2	Minimal Leaching	Low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0.0
4	DS01_1.1-1.2	81	0.0	<2	Minimal Leaching	Low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0.0
5	DS01_1.9-2.0	55	0.0	<2	Minimal Leaching	Very low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0.0
6	DS04_0.0-0.1	101	0.8	78	Minimal Leaching	Low	Medium-high. Most plants and crops will perform well, possible problems for P sensitive species on sandy soil.	0.8
7	DS04_0.2-0.3	93	0.5	50	Minimal Leaching	Low	Moderate. For most soil, low for iron rich (red) soil and medium to heavy clay, possible problems for P sensitive species on sandy soil.	0.5
8	DS04_0.5-0.6	68	0.4	28	Minimal Leaching	Very low	Low. Common for silty, sandy soil, leached and for sandstone and metamorphic parent material	0.4
9	DS04_1.1-1.2	101	0.2	23	Minimal Leaching	Low	Low. Common for silty, sandy soil, leached and for sandstone and metamorphic parent material	0.2
10	DS04_1.9-2.0	93	0.0	<2	Minimal Leaching	Low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0.0
11	DS07_0.0-0.1	74	0.6	42	Minimal Leaching	Low	Moderate. For most soil, low for iron rich (red) soil and medium to heavy clay, possible problems for P sensitive species on sandy soil.	0.6
12	DS07_0.2-0.3	75	0.0	<2	Minimal Leaching	Low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0.0

Certificate of Analysis signatory:

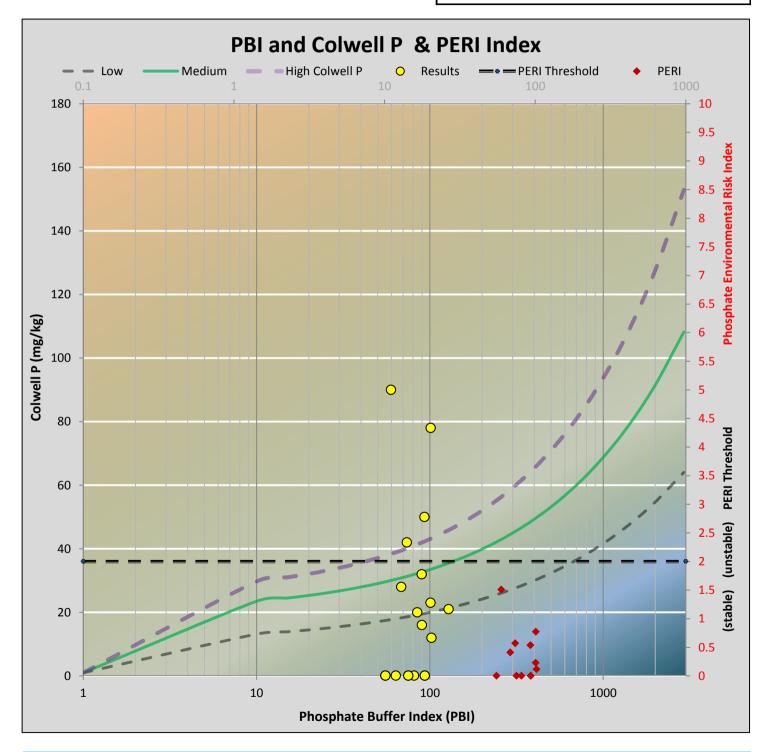
Phone: +617 3289 7179 Bio-Track Pty Ltd ABN 91 056 237 275

Test Code/Name	[372] Phosphoru	372] Phosphorus-PBI-Colwell						
Lab Reference (LR)	040422.635	Client Name	ALS					
SampleID	(As Listed) Client Contact		SUB RESULTS					
		Project Name	PBI + Moisture Content Testing					
Report Date		Job Number	ALS Batch# EB2208583					
Sample Received Date	4/04/2022	Order Number	507624					
Sample Disposal Date	3/06/2022	Chain of Custody						
Sample Packaging	Plastic Bag	Client Email	subresults.bri@alsglobal.com					
Temperature	Ambient	Client Address	2 Byth St Stafford Brisbane Queensland					
•								

<u>Analytical Method</u>: As per 912b P Buffer Index - PBI +ColP - ICPAES, <u>Soil Chemical Methods - Australasia</u>, Raymont & Lyons, 2001.

PBI+CoIP =

[Ps(mg P/kg) + ColwellP(mg/kg)] where:


c(mg P/L) Ps = freshly sorbed P (mg P/kg); and

c = final solution P concentration (mg P/L)

S#	SampleID	Phosphate Buffer Index	PERI	Colwell P mg P/kg	PERI Ranking	PBI Ranking	Colwell P Assessment	Phosphorus Environmental Risk Index
13	DS07_0.5-0.6	55	0.0	<2	Minimal Leaching	Very low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0.0
14	DS07_1.1-1.2	64	0.0	<2	Minimal Leaching	Very low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0.0
15	DS07_1.9-2.0	75	0.0	<2	Minimal Leaching	Low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0.0
16	SS01_0.0-0.3	90	0.4	32	Minimal Leaching	Low	Moderate. For most soil, low for iron rich (red) soil and medium to heavy clay, possible problems for P sensitive species on sandy soil.	0.4
17	SS02_0.0-0.3	85	0.2	20	Minimal Leaching	Low	Low. Common for silty, sandy soil, leached and for sandstone and metamorphic parent material	0.2
18	SS03_0.0-0.3	90	0.2	16	Minimal Leaching	Low	Very low. Common for leached sandy soil, for dune, sandy alluvium and for sandstone and metamorphic parent materials	0
19	SS04_0.0-0.3	128	0.2	21	Minimal Leaching	Low	Low. Common for silty, sandy soil, leached and for sandstone and metamorphic parent material	0

Test Code/Name	[372] Phosphorus-PBI-Colwell					
Lab Reference (LR)	040422.635	Client Name	ALS			
SampleID	(As Listed)	Client Contact	SUB RESULTS			
		Project Name	PBI + Moisture Content Testing			
Report Date	21/04/2022	Job Number	ALS Batch# EB2208583			
Sample Received Date	4/04/2022	Order Number	507624			
Sample Disposal Date	3/06/2022	Chain of Custody				
Sample Packaging	Plastic Bag	Client Email	subresults.bri@alsglobal.com			
Temperature	Ambient	Client Address	2 Byth St Stafford Brisbane Queensland			

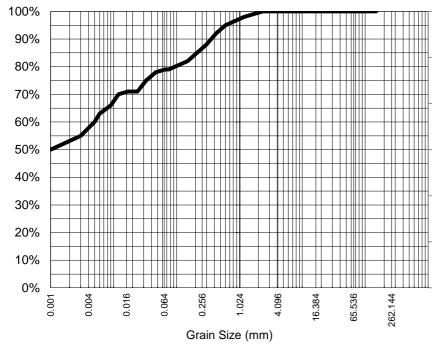
<u>PBI Interpretation Reference:</u> "Making Better Fertiliser Decisions for Grazed Pastures in Australia", Published by the Victorian Government Department of Primary Industries © The State of Victoria, Department of Primary Industries, June 2007.

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-001 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS07_0.0-0.1

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	95%
0.425	92%
0.300	88%
0.150	82%
0.075	79%
Particle Size (microns)	
47	78%
33	75%
24	71%
17	71%
12	70%
9	66%
6	63%
5	60%
1	50%

Median Particle Size (mm)* <0	0.006
-------------------------------	-------

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.71

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotil

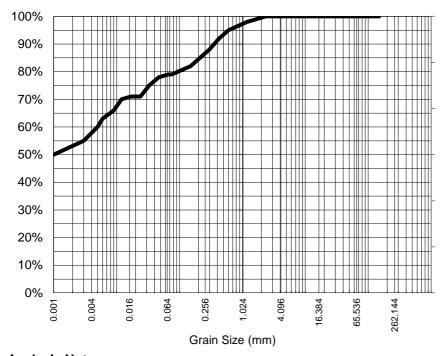
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-001DUP / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS07_0.0-0.1

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	95%
0.425	92%
0.300	88%
0.150	82%
0.075	79%
Particle Size (microns)	
47	78%
33	75%
24	71%
17	71%
12	70%
9	66%
6	63%
5	60%
1	50%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.71

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotily

Satish Trivedi Soil Senior Chemist Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental **Brisbane QLD**

CLIENT: NAVJOT KAUR DATE REPORTED: 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD DATE RECEIVED: 24-Mar-2022

Po Box 1307 **REPORT NO:** EB2208583-002 / PSD **ADDRESS:**

Fortitude Valley

Qld, Australia

SAMPLE ID: PROJECT: 60651803 5.2 DS07_0.2-0.3

Particle Size Distribution

Analysis Notes

Samples analysed as received.

	1
Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	96%
0.425	94%
0.300	91%
0.150	87%
0.075	85%
Particle Size (microns)	
47	83%
33	82%
24	80%
17	80%
12	77%
9	75%
6	71%
5	66%
1	56%

<0.006 Median Particle Size (mm)*

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Limit of Reporting: 1% Loss on Pretreatment NA

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm)

NATA Accreditation: 825 Site: Brisbane This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi Soil Senior Chemist

Authorised Signatory

Page 1 of 1

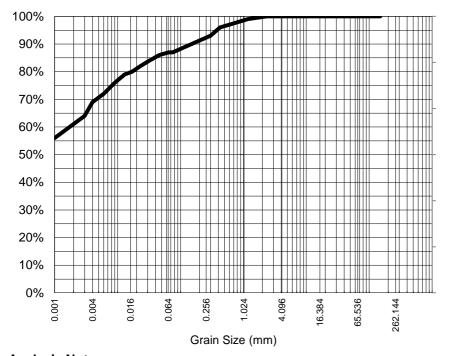
Template Version PKV8.0 180919

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-003 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS07_0.5-0.6

Particle Size Distribution

Analysis Notes

Test Method:

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	97%
0.425	96%
0.300	93%
0.150	90%
0.075	87%
Particle Size (microns)	
46	86%
32	84%
23	82%
17	80%
13	79%
9	76%
6	72%
4	69%
1	56%

IMedian Particle Size (mm)* I < 0.006	Median Particle Size (mm)*	< 0.006
---	----------------------------	---------

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.64

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi
Soil Senior Chemist

Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-004 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS07_0.8-0.9

Particle Size Distribution

		:-	NI.	4
А	na	lvsis	NO	tes

Test Method:

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	96%
0.425	94%
0.300	92%
0.150	89%
0.075	88%
Particle Size (microns)	
45	86%
32	84%
22	84%
16	84%
12	81%
9	79%
6	76%
4	74%
1	67%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.7

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi

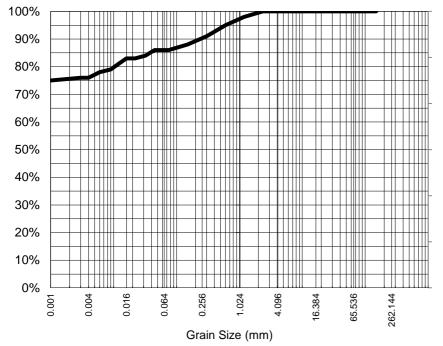
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-005 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS07_1.1-1.2

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	95%
0.425	93%
0.300	91%
0.150	88%
0.075	86%
Particle Size (microns)	
45	86%
32	84%
22	83%
16	83%
12	81%
9	79%
6	78%
4	76%
1	75%

Median Particle Size (mm)*	<0.006
----------------------------	--------

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.7

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotiv

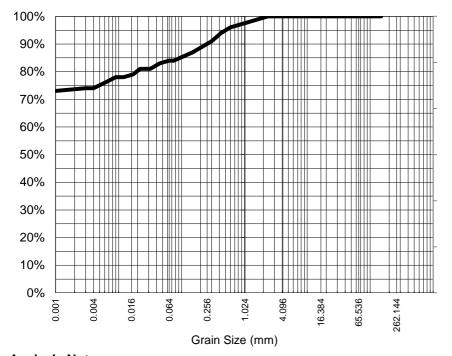
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-006 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS07_1.5-1.6

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	96%
0.425	94%
0.300	91%
0.150	87%
0.075	84%
Particle Size (microns)	
45	83%
32	81%
22	81%
17	79%
12	78%
9	78%
6	76%
4	74%
1	73%

Median Particle Size (mm)*	<0.006
----------------------------	--------

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.71

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotil

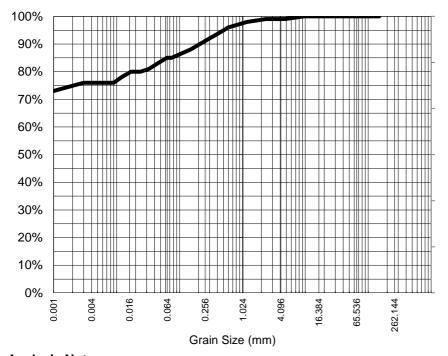
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-007 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS07_1.9-2.0

Particle Size Distribution

<u>Anal</u>	ysis	<u>Notes</u>

Samples analysed as received.

Particle Size (mm)	% Passing
9.50	100%
4.75	99%
2.36	99%
1.18	98%
0.600	96%
0.425	94%
0.300	92%
0.150	88%
0.075	85%
Particle Size (microns)	
45	83%
33	81%
24	80%
17	80%
12	78%
9	76%
6	76%
4	76%
1	73%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.74

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotivi

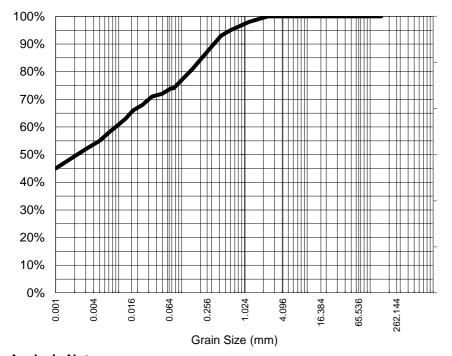
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-008 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS01_0.0-0.1

Particle Size Distribution

<u>Anal</u>	lysis	No	<u>tes</u>	

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	95%
0.425	93%
0.300	89%
0.150	81%
0.075	74%
Particle Size (microns)	
49	72%
34	71%
24	68%
17	66%
13	63%
9	60%
7	58%
5	55%
1	45%

Median Particle Size (mm)* <0.007

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.61

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

WORLD RECOGNISED
ACCREDITATION

Satish Trivedi

Soil Senior Chemist

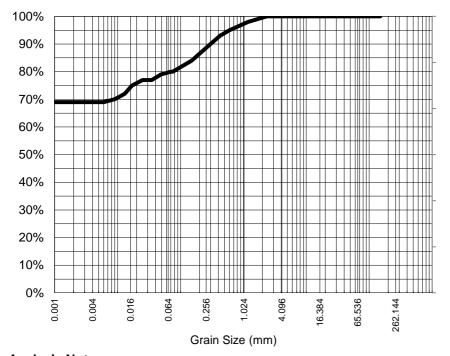
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-009 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS01_0.2-0.3

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	95%
0.425	93%
0.300	90%
0.150	84%
0.075	80%
Particle Size (microns)	
49	79%
35	77%
25	77%
17	75%
13	72%
9	70%
6	69%
5	69%
1	69%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.59

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotivi

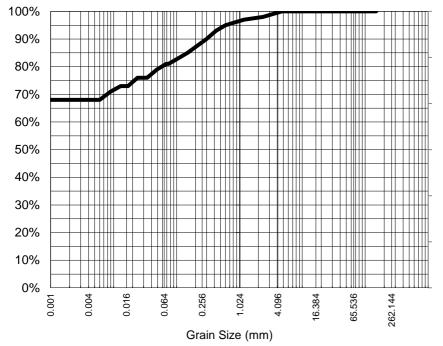
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-010 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS01_0.5-0.6

Particle Size Distribution

Δ	na	lve	ie	N	otes
~	ιıa	172	13	144	ULES

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	98%
1.18	97%
0.600	95%
0.425	93%
0.300	90%
0.150	85%
0.075	81%
Particle Size (microns)	
49	79%
34	76%
24	76%
17	73%
13	73%
9	71%
6	68%
4	68%
1	68%

Median Particle Size (mm)*	< 0.006
----------------------------	---------

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.62

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotily

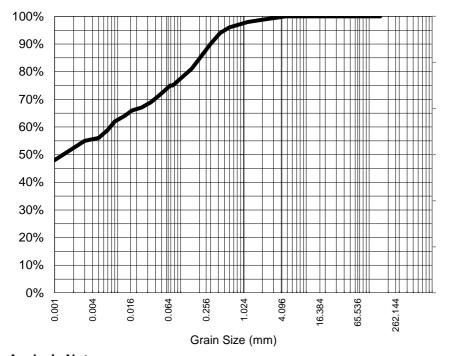
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-011 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS01_0.8-0.9

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	98%
0.600	96%
0.425	94%
0.300	90%
0.150	81%
0.075	75%
Particle Size (microns)	
49	72%
34	69%
24	67%
17	66%
13	64%
9	62%
7	59%
5	56%
1	48%

Median Particle Size (mm)* <0.007

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.63

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi

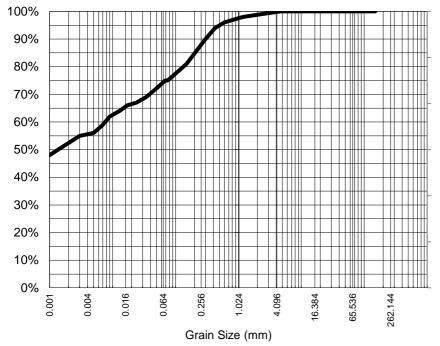
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-011DUP / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS01_0.8-0.9

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	98%
0.600	96%
0.425	94%
0.300	90%
0.150	81%
0.075	75%
Particle Size (microns)	
49	72%
34	69%
24	67%
17	66%
13	64%
9	62%
7	59%
5	56%
1	48%

Median Particle Size (mm)* <0.007

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.63

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi

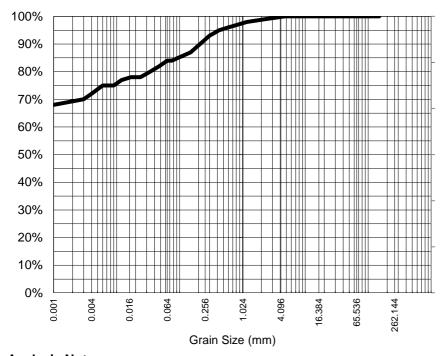
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-012 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS01_1.1-1.2

Particle Size Distribution

<u>Ana</u>	<u>lysis</u>	<u>Notes</u>

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	98%
0.600	96%
0.425	95%
0.300	93%
0.150	87%
0.075	84%
Particle Size (microns)	
48	82%
34	80%
24	78%
17	78%
12	77%
9	75%
6	75%
4	72%
1	68%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.65

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi

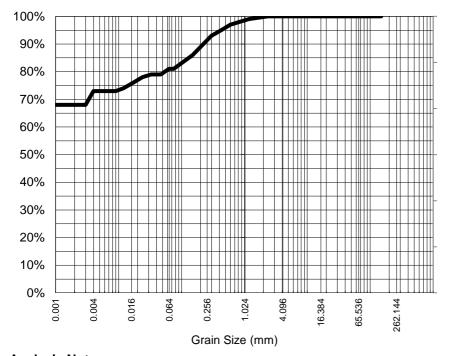
Satish Trivedi Soil Senior Chemist Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-013 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS01_1.5-1.6

Particle Size Distribution

<u>Ana</u>	lysis	<u>Notes</u>

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	97%
0.425	95%
0.300	93%
0.150	86%
0.075	81%
Particle Size (microns)	
47	79%
33	79%
24	78%
17	76%
12	74%
9	73%
6	73%
4	73%
1	68%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.73

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi

Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-014 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS01_1.9-2.0

Particle Size Distribution

<u>Anal</u>	lysis	No	<u>tes</u>	

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	97%
0.425	96%
0.300	94%
0.150	89%
0.075	86%
Particle Size (microns)	
43	85%
31	85%
22	81%
15	81%
11	80%
8	78%
6	78%
4	78%
1	77%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.8

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

atish Trivedi

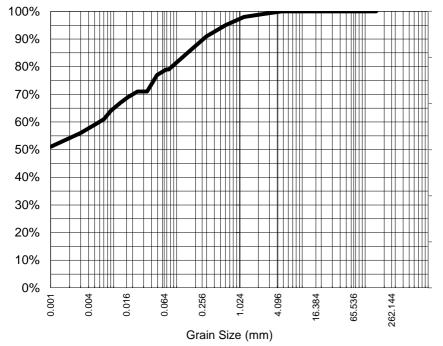
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-015 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS04_0.0-0.1

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	98%
0.600	95%
0.425	93%
0.300	91%
0.150	85%
0.075	79%
Particle Size (microns)	
49	77%
34	71%
24	71%
17	69%
13	67%
9	64%
7	61%
5	59%
1	51%

Median Particle Size (mm)* <0.007

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.64

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi
Soil Senior Chemist

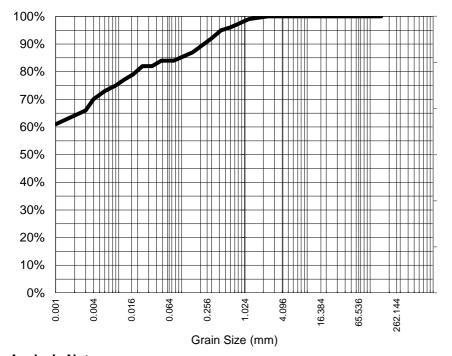
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-016 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS04_0.2-0.3

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Dartiala Cias (assa)	0/ Danaira
Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	96%
0.425	95%
0.300	92%
0.150	87%
0.075	84%
Particle Size (microns)	
48	84%
34	82%
24	82%
17	79%
12	77%
9	75%
6	73%
4	70%
1	61%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.68

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi
Soil Senior Chemist

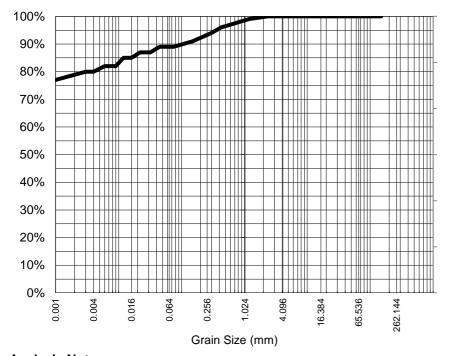
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-017 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS04_0.5-0.6

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	97%
0.425	96%
0.300	94%
0.150	91%
0.075	89%
Particle Size (microns)	
45	89%
32	87%
22	87%
16	85%
12	85%
9	82%
6	82%
4	80%
1	77%

Median Particle Size (mm)*	< 0.006
----------------------------	---------

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.73

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotivi

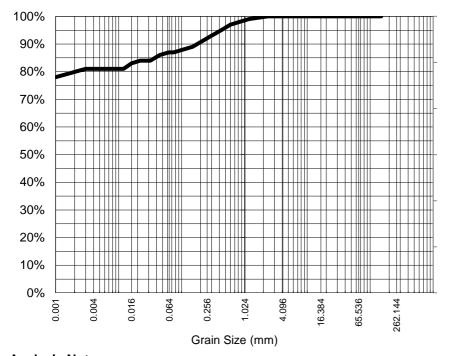
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-018 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS04_0.8-0.9

Particle Size Distribution

<u>Ana</u>	lysis	<u>Notes</u>

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	97%
0.425	95%
0.300	93%
0.150	89%
0.075	87%
Particle Size (microns)	
45	86%
32	84%
22	84%
16	83%
12	81%
8	81%
6	81%
4	81%
1	78%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.73

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotivi

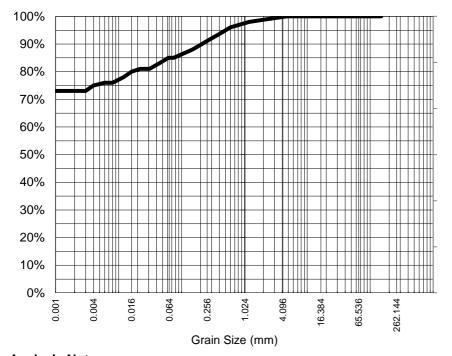
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-019 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS04_1.1-1.2

Particle Size Distribution

<u>Anal</u>	lysis	No	<u>tes</u>	

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	98%
0.600	96%
0.425	94%
0.300	92%
0.150	88%
0.075	85%
Particle Size (microns)	
44	83%
31	81%
22	81%
16	80%
12	78%
8	76%
6	76%
4	75%
1	73%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.77

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sottle Trivali

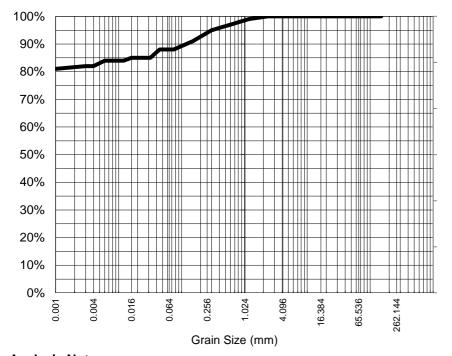
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-020 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS04_1.5-1.6

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	97%
0.425	96%
0.300	95%
0.150	91%
0.075	88%
Particle Size (microns)	
45	88%
32	85%
22	85%
16	85%
12	84%
8	84%
6	84%
4	82%
1	81%

Median Particle Size (mm)*	< 0.006
----------------------------	---------

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Loss on Pretreatment NA Limit of Reporting: 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.7

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotivi

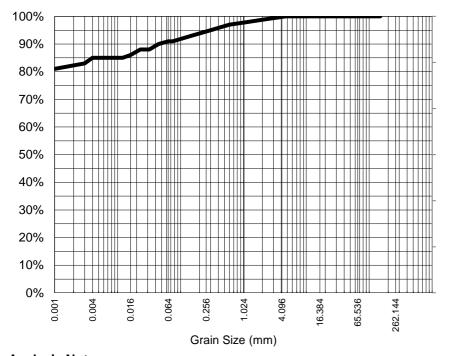
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-021 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS04_1.9-2.0

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	98%
0.600	97%
0.425	96%
0.300	95%
0.150	93%
0.075	91%
Particle Size (microns)	
45	90%
32	88%
23	88%
16	86%
12	85%
8	85%
6	85%
4	85%
1	81%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.66 (2.65)*

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotivi

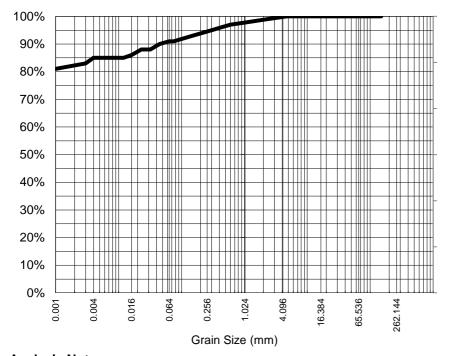
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-021DUP / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** DS04_1.9-2.0

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	98%
0.600	97%
0.425	96%
0.300	95%
0.150	93%
0.075	91%
Particle Size (microns)	
45	90%
32	88%
23	88%
16	86%
12	85%
8	85%
6	85%
4	85%
1	81%

Median Particle Size (mm)*	< 0.006
----------------------------	---------

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.66 (2.65)*

NATA Accreditation: 825 Site: Brisbane

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotil

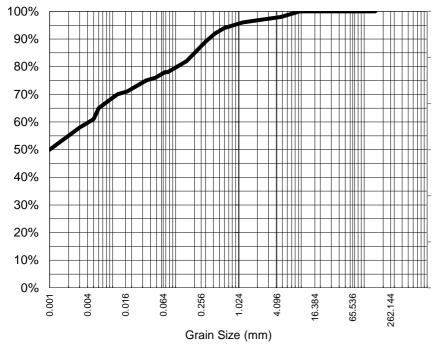
Satish Trivedi
Soil Senior Chemist
Authorised Signatory

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental **Brisbane QLD**

CLIENT: NAVJOT KAUR DATE REPORTED: 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD DATE RECEIVED: 24-Mar-2022


Po Box 1307 **REPORT NO:** EB2208583-022 / PSD **ADDRESS:**

Fortitude Valley

Qld, Australia

SAMPLE ID: PROJECT: 60651803 5.2 SS01_0.0-0.3

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
9.50	100%
4.75	98%
2.36	97%
1.18	96%
0.600	94%
0.425	92%
0.300	89%
0.150	82%
0.075	78%
Particle Size (microns)	
48	76%
34	75%
24	73%
17	71%
12	70%
9	68%
6	65%
5	61%
1	50%

<0.006 Median Particle Size (mm)*

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

Limit of Reporting: 1% Loss on Pretreatment NA

Sample Description: Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.83 (2.65)*

NATA Accreditation: 825 Site: Brisbane

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi Soil Senior Chemist **Authorised Signatory**

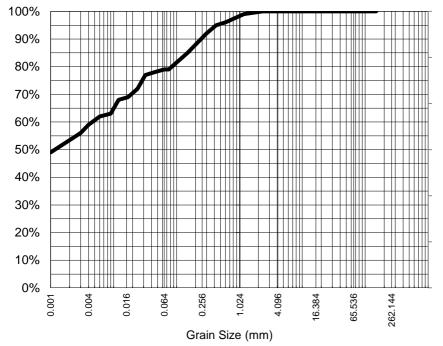
Certificate of Analysis

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED**: 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-023 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID:** SS02_0.0-0.3

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	96%
0.425	95%
0.300	92%
0.150	85%
0.075	79%
Particle Size (microns)	
45	78%
32	77%
24	72%
17	69%
12	68%
9	63%
6	62%
4	59%
1	49%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.71 (2.65)*

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotivi

Satish Trivedi
Soil Senior Chemist
Authorised Signatory

Template Version PKV8.0 180919 Page 1 of 1

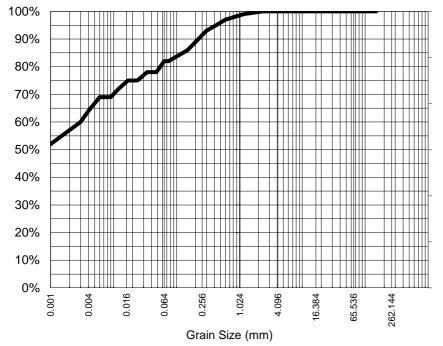
Certificate of Analysis

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED:** 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-024 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID**: SS03_0.0-0.3

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	97%
0.425	95%
0.300	93%
0.150	86%
0.075	82%
Particle Size (microns)	
48	78%
34	78%
24	75%
17	75%
12	72%
9	69%
6	69%
4	64%
1	52%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.62 (2.65)*

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Satish Trivedi

Satish Trivedi Soil Senior Chemist Authorised Signatory

Template Version PKV8.0 180919 Page 1 of 1

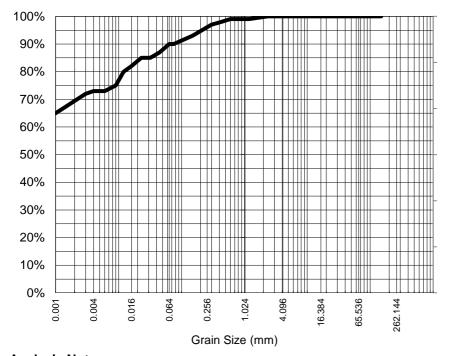
Certificate of Analysis

ALS Laboratory Group Pty Ltd 2 Byth Street Stafford, QLD 4053 pH 07 3243 7222 samples.brisbane@alsenviro.com

ALS Environmental Brisbane QLD

CLIENT: NAVJOT KAUR **DATE REPORTED:** 21-Apr-2022

COMPANY: AECOM AUSTRALIA PTY LTD **DATE RECEIVED**: 24-Mar-2022


ADDRESS: Po Box 1307 **REPORT NO:** EB2208583-025 / PSD

Fortitude Valley

Qld, Australia

PROJECT: 60651803 5.2 **SAMPLE ID**: SS04_0.0-0.3

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	99%
0.425	98%
0.300	97%
0.150	93%
0.075	90%
Particle Size (microns)	
45	87%
32	85%
23	85%
16	82%
12	80%
9	75%
6	73%
4	73%
1	65%

Median Particle Size (mm)*	< 0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 13-Apr-22

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.56 (2.65)*

NATA Accreditation: 825 Site: Brisbane
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Sotivi

Satish Trivedi
Soil Senior Chemist
Authorised Signatory

Template Version PKV8.0 180919 Page 1 of 1

QUALITY CONTROL REPORT

: +61 7 3552 8616

· 21-Apr-2022

Work Order : **EB2208583** Page : 1 of 8

Client : AECOM AUSTRALIA PTY LTD Laboratory : Environmental Division Brisbane

Contact : MS NAVJOT KAUR Contact : Carsten Emrich

Address : PO BOX 1307 Address : 2 Byth Street Stafford QLD Australia 4053

FORTITUDE VALLEY QLD, AUSTRALIA 4006 : +61 07 3553 2000 Telephone

 Project
 : 60651803 5.2
 Date Samples Received
 : 24-Mar-2022

 Order number
 : 60651803 5.2
 Date Analysis Commenced
 : 30-Mar-2022

C-O-C number : ----

Sampler : NAVJOT KAUR

Site : ---

Quote number : BN/081/21 V2

No. of samples received : 26 No. of samples analysed : 25 Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Inorganics, Stafford, QLD

Mark Hallas Senior Inorganic Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Mark Hallas Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD

Page : 2 of 8 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA002: pH 1:5 (Soils	s) (QC Lot: 4258395)								
EB2208583-001	DS07_0.0-0.1	EA002: pH Value		0.1	pH Unit	6.9	6.9	0.0	0% - 20%
EB2208583-011	DS01_0.8-0.9	EA002: pH Value		0.1	pH Unit	8.3	8.3	0.0	0% - 20%
EA002: pH 1:5 (Soils	s) (QC Lot: 4258402)								
EB2208599-006	Anonymous	EA002: pH Value		0.1	pH Unit	8.2	8.2	0.0	0% - 20%
EB2208583-021	DS04_1.9-2.0	EA002: pH Value		0.1	pH Unit	8.3	8.2	0.0	0% - 20%
EA010: Conductivity	(1:5) (QC Lot: 4258396)								
EB2208583-001	DS07_0.0-0.1	EA010: Electrical Conductivity @ 25°C		1	μS/cm	47	43	8.8	0% - 20%
EB2208583-011	DS01_0.8-0.9	EA010: Electrical Conductivity @ 25°C		1	μS/cm	171	155	9.8	0% - 20%
EA010: Conductivity	(1:5) (QC Lot: 4258403)								
EB2208599-006	Anonymous	EA010: Electrical Conductivity @ 25°C		1	μS/cm	276	260	6.0	0% - 20%
EB2208583-021	DS04_1.9-2.0	EA010: Electrical Conductivity @ 25°C		1	μS/cm	927	892	3.9	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110°C)(QC Lot: 4258408)							
EB2208583-001	DS07_0.0-0.1	EA055: Moisture Content		0.1	%	26.9	26.2	2.8	0% - 20%
EB2208583-011	DS01_0.8-0.9	EA055: Moisture Content		0.1	%	21.7	22.0	1.1	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110°C)(QC Lot: 4258409)							
EB2208583-021	DS04_1.9-2.0	EA055: Moisture Content		0.1	%	22.0	21.8	1.0	0% - 20%
EB2208599-006	Anonymous	EA055: Moisture Content		0.1	%	25.1	25.9	3.2	0% - 20%
ED006: Exchangeab	le Cations on Alkaline Soils	(QC Lot: 4281890)							
EB2208583-004	DS07_0.8-0.9	ED006: Exchangeable Calcium		0.2	meq/100g	13.8	13.1	5.7	0% - 20%
		ED006: Exchangeable Magnesium		0.2	meq/100g	16.3	15.5	4.9	0% - 20%
		ED006: Exchangeable Potassium		0.2	meq/100g	0.5	0.4	0.0	No Limit
		ED006: Exchangeable Sodium		0.2	meq/100g	4.0	3.5	12.2	0% - 50%
		ED006: Cation Exchange Capacity		0.2	meq/100g	34.6	32.5	6.2	0% - 20%

Page : 3 of 8
Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

ub-Matrix: SOIL							Duplicate (DUP) Report		
aboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (
D006: Exchangeab	ole Cations on Alkaline	Soils (QC Lot: 4281890) - continued							
EB2208583-014	DS01_1.9-2.0	ED006: Exchangeable Calcium		0.2	meq/100g	15.6	15.4	1.5	0% - 20%
		ED006: Exchangeable Magnesium		0.2	meq/100g	16.9	16.8	0.0	0% - 20%
		ED006: Exchangeable Potassium		0.2	meq/100g	0.4	0.4	0.0	No Limit
		ED006: Exchangeable Sodium		0.2	meq/100g	5.0	4.8	3.1	0% - 20%
		ED006: Cation Exchange Capacity		0.2	meq/100g	37.8	37.4	1.1	0% - 20%
D007: Exchangeab	ole Cations (QC Lot: 42	281952)							
B2208583-001	DS07_0.0-0.1	ED007: Exchangeable Calcium		0.1	meq/100g	15.1	14.8	2.1	0% - 20%
		ED007: Exchangeable Magnesium		0.1	meq/100g	13.0	13.7	5.9	0% - 20%
		ED007: Exchangeable Potassium		0.1	meq/100g	0.5	0.6	0.0	No Limit
		ED007: Exchangeable Sodium		0.1	meq/100g	1.6	1.5	8.5	0% - 50%
D008: Exchangeab	ole Cations (QC Lot: 42	281958)							
B2208580-036	Anonymous	ED008: Exchangeable Calcium		0.1	meq/100g	6.8	6.7	0.0	0% - 20%
		ED008: Exchangeable Magnesium		0.1	meg/100g	10.3	10.5	1.9	0% - 20%
		ED008: Exchangeable Potassium		0.1	meq/100g	<0.1	<0.1	0.0	No Limit
		ED008: Exchangeable Sodium		0.1	meq/100g	3.8	3.9	0.0	0% - 20%
D040S: Soluble Ma	ajor Anions (QC Lot: 42								
B2208583-001	DS07_0.0-0.1	ED040S: Sulfate as SO4 2-	14808-79-8	10	mg/kg	20	10	0.0	No Limit
EB2208583-011	DS01 0.8-0.9	ED040S: Sulfate as SO4 2-	14808-79-8	10	mg/kg	30	30	0.0	No Limit
	ajor Anions (QC Lot: 42				3 3				
EB2208583-021	DS04 1.9-2.0	ED040S: Sulfate as SO4 2-	14808-79-8	10	mg/kg	840	830	0.0	0% - 20%
	_		14000 13 0	10	mg/kg	040	000	0.0	070 2070
	y Discrete Analyser (C		40007.00.0	40		00	00	0.0	NI - I insit
EB2208583-001	DS07_0.0-0.1	ED045G: Chloride	16887-00-6	10	mg/kg	20	20	0.0	No Limit
EB2208583-011	DS01_0.8-0.9	ED045G: Chloride	16887-00-6	10	mg/kg	<10	<10	0.0	No Limit
	y Discrete Analyser (C	C Lot: 4258400)							
EB2208583-021	DS04_1.9-2.0	ED045G: Chloride	16887-00-6	10	mg/kg	1050	1110	5.5	0% - 20%
D091 : Calcium Ch	loride Extractable Boro	on (QC Lot: 4263325)							
EB2208583-001	DS07_0.0-0.1	ED091: Boron	7440-42-8	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EB2208583-014	DS01_1.9-2.0	ED091: Boron	7440-42-8	0.2	mg/kg	0.6	0.6	0.0	No Limit
D092: DTPA Extra	ctable Metals (QC Lot:	4263324)							
EB2208583-001	DS07_0.0-0.1	ED092: Copper	7440-50-8	1	mg/kg	1.38	1.41	2.7	No Limit
		ED092: Iron	7439-89-6	1	mg/kg	19.9	20.0	0.4	0% - 20%
		ED092: Manganese	7439-96-5	1	mg/kg	11.1	11.9	6.8	0% - 50%
		ED092: Zinc	7440-66-6	1	mg/kg	<1.00	<1.00	0.0	No Limit
EB2208583-014	DS01_1.9-2.0	ED092: Copper	7440-50-8	1	mg/kg	<1.00	<1.00	0.0	No Limit
		ED092: Iron	7439-89-6	1	mg/kg	5.76	5.67	1.6	No Limit
		ED092: Manganese	7439-96-5	1	mg/kg	4.08	3.90	4.7	No Limit
		ED092: Zinc	7440-66-6	1	mg/kg	<1.00	<1.00	0.0	No Limit

Page : 4 of 8
Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED093S: Soluble Ma	ajor Cations (QC Lot: 4	258393) - continued							
EB2208583-001	DS07_0.0-0.1	ED093S: Calcium	7440-70-2	10	mg/kg	<10	<10	0.0	No Limit
		ED093S: Magnesium	7439-95-4	10	mg/kg	<10	<10	0.0	No Limit
		ED093S: Sodium	7440-23-5	10	mg/kg	50	50	0.0	No Limit
		ED093S: Potassium	7440-09-7	10	mg/kg	<10	<10	0.0	No Limit
EB2208583-011	DS01_0.8-0.9	ED093S: Calcium	7440-70-2	10	mg/kg	80	70	0.0	No Limit
		ED093S: Magnesium	7439-95-4	10	mg/kg	20	20	0.0	No Limit
		ED093S: Sodium	7440-23-5	10	mg/kg	80	80	0.0	No Limit
		ED093S: Potassium	7440-09-7	10	mg/kg	10	<10	0.0	No Limit
ED093S: Soluble Ma	ajor Cations (QC Lot: 4	258399)							
EB2208583-021	DS04_1.9-2.0	ED093S: Calcium	7440-70-2	10	mg/kg	80	80	0.0	No Limit
		ED093S: Magnesium	7439-95-4	10	mg/kg	80	80	0.0	No Limit
		ED093S: Sodium	7440-23-5	10	mg/kg	860	850	0.0	0% - 20%
		ED093S: Potassium	7440-09-7	10	mg/kg	<10	<10	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) b	y Discrete Analyser (QC Lot: 4258398)							
EB2208583-001	DS07 0.0-0.1	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	6.6	6.7	2.3	0% - 20%
EB2208583-011	DS01 0.8-0.9	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	20.2	20.2	0.0	0% - 20%
EK059G: Nitrite plu	s Nitrate as N (NOx) b	v Discrete Analyser (QC Lot: 4258404)							
EB2208583-021	DS04 1.9-2.0	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	1.1	1.2	0.0	0% - 50%
		ete Analyser (QC Lot: 4258405)		U	99			0.0	0,0 00,0
EB2208583-001	DS07 0.0-0.1			20	mg/kg	460	410	10.6	0% - 20%
EB2208583-001	DS01_0.8-0.9	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	1310	1300	0.0	0% - 20%
	_	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	1010	1300	0.0	070 - 2070
		ete Analyser (QC Lot: 4258406)		20		400	400		N. 1: 1
EB2208583-021	DS04_1.9-2.0	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	100	100	0.0	No Limit
EB2208599-006	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	590	720	19.7	0% - 20%
		us (Colwell) (QC Lot: 4263323)							
EB2208583-001	DS07_0.0-0.1	EK080: Bicarbonate Ext. P (Colwell)		5	mg/kg	11	12	0.0	No Limit
EB2208583-015	DS04_0.0-0.1	EK080: Bicarbonate Ext. P (Colwell)		5	mg/kg	58	57	0.0	0% - 50%
EK081: Bicarbonate	Extractable Phosphor	us (Olsen) (QC Lot: 4280198)							
EB2208583-005	DS07_1.1-1.2	EK081: Bicarbonate Extractable P (Olsen)		1	mg/kg	<1.0	<1.0	0.0	No Limit
EB2208583-015	DS04_0.0-0.1	EK081: Bicarbonate Extractable P (Olsen)		1	mg/kg	19.8	21.0	5.8	0% - 20%
EP004: Organic Mat	tter (QC Lot: 4260564)								
EB2208583-001	DS07_0.0-0.1	EP004: Organic Matter		0.5	%	1.6	1.6	0.0	No Limit
	_	EP004: Total Organic Carbon		0.5	%	1.0	0.9	0.0	No Limit
EB2208583-010	DS01_0.5-0.6	EP004: Organic Matter		0.5	%	2.0	2.0	0.0	No Limit
	_	EP004: Total Organic Carbon		0.5	%	1.2	1.2	0.0	No Limit
EP004: Organic Mat	tter (QC Lot: 4260565)					<u> </u>			
EB2208583-021	DS04_1.9-2.0	EP004: Organic Matter		0.5	%	1.0	1.0	0.0	No Limit
		EP004: Organic Matter		0.5	%	0.6	0.5	0.0	No Limit

Page : 5 of 8
Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA002: pH 1:5 (Soils) (QCLot: 4258395)							
EA002: pH Value		pH Unit		4 pH Unit	100	98.0	102
				7 pH Unit	100	98.0	102
EA002: pH 1:5 (Soils) (QCLot: 4258402)							
EA002: pH Value		pH Unit		4 pH Unit	100	98.0	102
				7 pH Unit	100	98.0	102
EA010: Conductivity (1:5) (QCLot: 4258396)							
EA010: Electrical Conductivity @ 25°C	1	μS/cm	<1	1412 μS/cm	98.8	97.0	103
EA010: Conductivity (1:5) (QCLot: 4258403)							
EA010: Electrical Conductivity @ 25°C	1	μS/cm	<1	1412 μS/cm	98.8	97.0	103
EA152: Soil Particle Density (QCLot: 4259479)							
EA152: Soil Particle Density (Clay/Silt/Sand)		g/cm3		2.68 g/cm3	100	80.0	120
EA152: Soil Particle Density (QCLot: 4259481)							
EA152: Soil Particle Density (Clay/Silt/Sand)		g/cm3		2.68 g/cm3	100	80.0	120
ED006: Exchangeable Cations on Alkaline Soils (QCLot: 4281890)							
ED006: Exchangeable Calcium	0.2	meq/100g	<0.2	6.708 meq/100g	119	70.0	130
ED006: Exchangeable Magnesium	0.2	meq/100g	<0.2	5.0353 meq/100g	112	70.0	130
ED006: Exchangeable Potassium	0.2	meq/100g	<0.2	1.0556 meq/100g	127	70.0	130
ED006: Exchangeable Sodium	0.2	meq/100g	<0.2	1.7599 meq/100g	125	70.0	130
ED006: Cation Exchange Capacity	0.2	meq/100g	<0.2	14.5588 meq/100g	118	70.0	130
ED007: Exchangeable Cations (QCLot: 4281952)							
ED007: Exchangeable Calcium	0.1	meq/100g	<0.1	6.5 meq/100g	89.9	79.0	113
ED007: Exchangeable Magnesium	0.1	meq/100g	<0.1	8.6 meq/100g	91.7	85.0	115
ED007: Exchangeable Potassium	0.1	meq/100g	<0.1	1.6 meq/100g	91.3	70.0	122
ED007: Exchangeable Sodium	0.1	meq/100g	<0.1	1.8 meq/100g	91.4	76.0	112
ED007: Cation Exchange Capacity	0.1	meq/100g	<0.1	18.5 meq/100g	91.0	82.0	112
ED008: Exchangeable Cations (QCLot: 4281958)							
ED008: Exchangeable Calcium	0.1	meq/100g	<0.1	5.6 meq/100g	99.3	91.0	109
ED008: Exchangeable Magnesium	0.1	meq/100g	<0.1	6.9 meq/100g	103	89.0	111
ED008: Exchangeable Potassium	0.1	meq/100g	<0.1	1.3 meq/100g	94.9	79.0	116
ED008: Exchangeable Sodium	0.1	meq/100g	<0.1	0.7 meq/100g	90.0	75.0	118
ED008: Cation Exchange Capacity	0.1	meq/100g	<0.1	14.5 meq/100g	100	88.0	110
ED040S: Soluble Major Anions (QCLot: 4258394)							
ED040S: Sulfate as SO4 2- 14808-79-8	10	mg/kg	<10	750 mg/kg	103	90.0	114

Page : 6 of 8
Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Sub-Matrix: SOIL					Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED040S: Soluble Major Anions (QCLot: 4258401)									
ED040S: Sulfate as SO4 2-	14808-79-8	10	mg/kg	<10	750 mg/kg	101	90.0	114	
ED045G: Chloride by Discrete Analyser (QCLot: 425	3397)								
ED045G: Chloride	16887-00-6	10	mg/kg	<10	50 mg/kg	99.9	83.0	119	
				<10	5000 mg/kg	104	83.0	119	
ED045G: Chloride by Discrete Analyser (QCLot: 4258	3400)								
ED045G: Chloride	16887-00-6	10	mg/kg	<10	50 mg/kg	101	83.0	119	
				<10	5000 mg/kg	104	83.0	119	
D091 : Calcium Chloride Extractable Boron (QCLot	4263325)								
ED091: Boron	7440-42-8	0.2	mg/kg	<0.2	100 mg/kg	99.2	85.0	117	
ED092: DTPA Extractable Metals (QCLot: 4263324)									
ED092: Copper	7440-50-8	1	mg/kg	<1.00	1.5 mg/kg	100.0	84.0	122	
ED092: Iron	7439-89-6	1	mg/kg	<1.00	68 mg/kg	106	70.0	130	
ED092: Manganese	7439-96-5	1	mg/kg	<1.00	9.38 mg/kg	126	70.0	130	
ED092: Zinc	7440-66-6	1	mg/kg	<1.00	7.81 mg/kg	97.1	79.0	122	
ED093S: Soluble Major Cations (QCLot: 4258393)									
ED093S: Calcium	7440-70-2	10	mg/kg	<10	250 mg/kg	97.9	80.0	120	
ED093S: Magnesium	7439-95-4	10	mg/kg	<10	250 mg/kg	102	80.0	120	
ED093S: Sodium	7440-23-5	10	mg/kg	<10	250 mg/kg	101	80.0	120	
ED093S: Potassium	7440-09-7	10	mg/kg	<10	250 mg/kg	101	80.0	120	
ED093S: Soluble Major Cations (QCLot: 4258399)									
ED093S: Calcium	7440-70-2	10	mg/kg	<10	250 mg/kg	95.8	80.0	120	
ED093S: Magnesium	7439-95-4	10	mg/kg	<10	250 mg/kg	100	80.0	120	
ED093S: Sodium	7440-23-5	10	mg/kg	<10	250 mg/kg	101	80.0	120	
ED093S: Potassium	7440-09-7	10	mg/kg	<10	250 mg/kg	99.2	80.0	120	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (QCLot: 4258	398)							
EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	90.7	83.2	111	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (OCI of: 4258	404)							
EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	94.7	83.2	111	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	r (OCL of: 4258405)								
EK061G: Total Kjeldahl Nitrogen by Discrete Analyse		20	mg/kg	<20	306 mg/kg	107	70.0	130	
2.00 TO. Total Injuratili Miliogoff as IN				<20	2180 mg/kg	98.0	72.0	128	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	r (OCL of: 4258406)								
EK061G: Total Kjeldahl Nitrogen by Discrete Analyse		20	mg/kg	<20	306 mg/kg	107	70.0	130	
LITOO TO. TOtal Njeluarii Nilloyell as N			9/1.9	<20	2180 mg/kg	97.4	72.0	128	
) (QCLot: 4263323)					21.1.	. = . *	.=•	

Page : 7 of 8
Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

Sub-Matrix: SOIL			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK080: Bicarbonate Extractable Phosphorus (Colwell) (QCLot: 4263323)	- continued						
EK080: Bicarbonate Ext. P (Colwell)	5	mg/kg	<5	100 mg/kg	99.5	75.0	112
			<5	22 mg/kg	100	70.0	130
			<5	155 mg/kg	100	80.0	120
EK081: Bicarbonate Extractable Phosphorus (Olsen) (QCLot: 4280198)							
EK081: Bicarbonate Extractable P (Olsen)	1	mg/kg	<1.0	20 mg/kg	98.2	84.0	115
			<1.0	9.05 mg/kg	115	82.0	118
			<1.0	43 mg/kg	84.2	77.0	123
EP004: Organic Matter (QCLot: 4260564)							
EP004: Organic Matter	0.5	%	<0.5	80 %	95.0	83.0	115
EP004: Total Organic Carbon	0.5	%	<0.5	46.4 %	95.0	85.0	115
EP004: Organic Matter (QCLot: 4260565)							
EP004: Organic Matter	0.5	%	<0.5	80 %	95.0	83.0	115
EP004: Total Organic Carbon	0.5	%	<0.5	46.4 %	95.0	85.0	115

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 42	58398)					
EB2208583-002	DS07_0.2-0.3	EK059G: Nitrite + Nitrate as N (Sol.)		2 mg/kg	# Not Determined	70.0	130
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 42	58404)					
EB2208583-022	SS01_0.0-0.3	EK059G: Nitrite + Nitrate as N (Sol.)		2 mg/kg	78.8	70.0	130
EK061G: Total Kje	eldahl Nitrogen By Discrete Analyser (QCLot: 4258405)						
EB2208583-002	DS07_0.2-0.3	EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	88.0	70.0	130
EK061G: Total Kje	eldahl Nitrogen By Discrete Analyser (QCLot: 4258406)						
EB2208583-022	SS01_0.0-0.3	EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	# 69.3	70.0	130
EK080: Bicarbona	te Extractable Phosphorus (Colwell) (QCLot: 4263323)						
EB2208583-002	DS07_0.2-0.3	EK080: Bicarbonate Ext. P (Colwell)		40 mg/kg	98.8	70.0	130
EK081: Bicarbona	te Extractable Phosphorus (Olsen) (QCLot: 4280198)						
EB2208583-007	DS07_1.9-2.0	EK081: Bicarbonate Extractable P (Olsen)		20 mg/kg	97.5	70.0	130
EP004: Organic M	atter (QCLot: 4260564)						
EB2208583-002	DS07_0.2-0.3	EP004: Organic Matter		4 %	93.0	70.0	130

Page : 8 of 8 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Sub-Matrix: SOIL				Ma	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP004: Organic Ma	atter (QCLot: 4260564) - continued						
EB2208583-002	DS07_0.2-0.3	EP004: Total Organic Carbon -		2.32 %	93.0	70.0	130
EP004: Organic Ma	atter (QCLot: 4260565)						
EB2208583-022	SS01_0.0-0.3	EP004: Organic Matter -		4 %	93.2	70.0	130
		EP004: Total Organic Carbon -		2.32 %	93.2	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EB2208583** Page : 1 of 17

Client : AECOM AUSTRALIA PTY LTD Laboratory : Environmental Division Brisbane

 Contact
 : MS NAVJOT KAUR
 Telephone
 : +61 7 3552 8616

 Project
 : 60651803 5.2
 Date Samples Received
 : 24-Mar-2022

 Site
 :--- Issue Date
 : 21-Apr-2022

Sampler : NAVJOT KAUR No. of samples received : 26
Order number : 60651803 5.2 No. of samples analysed : 25

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	Ar EB2208583002	DS07_0.2-0.3	Nitrite + Nitrate as N		Not		MS recovery not determined,
			(Sol.)		Determined		background level greater than or
							equal to 4x spike level.
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	EB2208583022	SS01_0.0-0.3	Total Kjeldahl Nitrogen		69.3 %	70.0-130%	Recovery less than lower data quality
			as N				objective

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA002: pH 1:5 (Soils)							
Snap Lock Bag							
DS01_0.0-0.1,	DS01_0.2-0.3,	07-Apr-2022	30-Mar-2022	8			
DS01_0.5-0.6,	DS01_0.8-0.9,						
DS01_1.1-1.2,	DS01_1.5-1.6,						
DS01_1.9-2.0,	DS04_0.0-0.1,						
DS04_0.2-0.3,	DS04_0.5-0.6,						
DS04_0.8-0.9,	DS04_1.1-1.2,						
DS04_1.5-1.6,	DS04_1.9-2.0						
Soil Glass Jar - Unpreserved							
DS07_0.0-0.1,	DS07_0.2-0.3,	07-Apr-2022	29-Mar-2022	9			
DS07_0.5-0.6,	DS07_0.8-0.9,						
DS07_1.1-1.2,	DS07_1.5-1.6,						
DS07_1.9-2.0							
Soil Glass Jar - Unpreserved							
SS01_0.0-0.3,	SS02_0.0-0.3,	07-Apr-2022	30-Mar-2022	8			
SS03_0.0-0.3,	SS04_0.0-0.3						
EA010: Conductivity (1:5)							
Snap Lock Bag							
DS01_0.0-0.1,	DS01_0.2-0.3,	07-Apr-2022	30-Mar-2022	8			
DS01_0.5-0.6,	DS01_0.8-0.9,						
DS01_1.1-1.2,	DS01_1.5-1.6,						
DS01_1.9-2.0,	DS04_0.0-0.1,						
DS04_0.2-0.3,	DS04_0.5-0.6,						
DS04_0.8-0.9,	DS04_1.1-1.2,						
DS04_1.5-1.6,	DS04 1.9-2.0						

Page : 3 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA010: Conductivity (1:5) - Analysis Holdin	ng Time Compliance						
Soil Glass Jar - Unpreserved							
DS07_0.0-0.1,	DS07_0.2-0.3,	07-Apr-2022	29-Mar-2022	9			
DS07_0.5-0.6,	DS07_0.8-0.9,						
DS07_1.1-1.2,	DS07_1.5-1.6,						
DS07_1.9-2.0							
Soil Glass Jar - Unpreserved							
SS01_0.0-0.3,	SS02_0.0-0.3,	07-Apr-2022	30-Mar-2022	8			
SS03_0.0-0.3,	SS04_0.0-0.3						
EP004: Organic Matter							
Snap Lock Bag							
DS01_0.0-0.1,	DS01_0.2-0.3,	08-Apr-2022	30-Mar-2022	9			
DS01_0.5-0.6,	DS01_0.8-0.9,						
DS01_1.1-1.2,	DS01_1.5-1.6,						
DS01_1.9-2.0,	DS04_0.0-0.1,						
DS04_0.2-0.3,	DS04_0.5-0.6,						
DS04_0.8-0.9,	DS04_1.1-1.2,						
DS04_1.5-1.6,	DS04_1.9-2.0						

Outliers: Frequency of Quality Control Samples

Matrix: SOIL

Count		Rate (%)		Quality Control Specification
QC	Regular	Actual	Expected	
3	34	8.82	10.00	NEPM 2013 B3 & ALS QC Standard
3	34	8.82	10.00	NEPM 2013 B3 & ALS QC Standard
0	25	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
		QC Regular 3 34 3 34	QC Regular Actual 3 34 8.82 3 34 8.82	QC Regular Actual Expected 3 34 8.82 10.00 3 34 8.82 10.00

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: x = Holding time breach; ✓ = Within holding time.

Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Page : 4 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL					Evaluation	ı: 🗴 = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA002: pH 1:5 (Soils)								
Snap Lock Bag (EA002)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	07-Apr-2022	30-Mar-2022	1 2	07-Apr-2022	07-Apr-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (EA002)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	07-Apr-2022	29-Mar-2022	*	07-Apr-2022	07-Apr-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (EA002)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	07-Apr-2022	30-Mar-2022	<u>\$£</u>	07-Apr-2022	07-Apr-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							
EA010: Conductivity (1:5)								
Snap Lock Bag (EA010)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	07-Apr-2022	30-Mar-2022	se	07-Apr-2022	05-May-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (EA010)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	07-Apr-2022	29-Mar-2022	±c	07-Apr-2022	05-May-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (EA010)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	07-Apr-2022	30-Mar-2022	±c.	07-Apr-2022	05-May-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							

Page : 5 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-11	0°C)							
Snap Lock Bag (EA055)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022				30-Mar-2022	06-Apr-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (EA055)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022				30-Mar-2022	05-Apr-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (EA055)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022				30-Mar-2022	06-Apr-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							
EA058: Emerson Aggregate Test								
Snap Lock Bag (EA058)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022				30-Mar-2022	18-Sep-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Snap Lock Bag (EA058)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022				30-Mar-2022	19-Sep-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0,							
SS01_0.0-0.3,	SS02_0.0-0.3,							
SS03_0.0-0.3,	SS04_0.0-0.3							
EA150: Particle Sizing								
Snap Lock Bag (EA150H)								
DS07_0.0-0.1		22-Mar-2022				21-Apr-2022	18-Sep-2022	✓
Snap Lock Bag (EA150H)						04.4. 2225	40.0== 0000	
DS01_0.0-0.1,	DS04_0.0-0.1,	23-Mar-2022				21-Apr-2022	19-Sep-2022	✓
SS01_0.0-0.3,	SS02_0.0-0.3,							
SS03_0.0-0.3,	SS04_0.0-0.3							

Page : 6 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL					Evaluation	ı: 🗴 = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA150: Soil Classification based on Particle	e Size							
Snap Lock Bag (EA150H)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022				21-Apr-2022	18-Sep-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Snap Lock Bag (EA150H)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022				21-Apr-2022	19-Sep-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0,							
SS01_0.0-0.3,	SS02_0.0-0.3,							
SS03_0.0-0.3,	SS04_0.0-0.3							
EA152: Soil Particle Density								
Snap Lock Bag (EA152)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022				21-Apr-2022	18-Sep-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Snap Lock Bag (EA152)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022				21-Apr-2022	19-Sep-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0,							
SS01_0.0-0.3,	SS02_0.0-0.3,							
SS03_0.0-0.3,	SS04_0.0-0.3							

Page : 7 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Method		Sample Date	Fx	traction / Preparation		uation: x = Holding time breach ; ✓ = Within holdi Analysis			
Container / Client Sample ID(s)		Sample Date	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
ED005: Exchange Acidity			Date extracted	Duc for extraction	Lvaraation	Date analysed	Due for analysis	Lvaidatioi	
Snap Lock Bag (ED005)						<u> </u>			
DS01_0.0-0.1,	DS01 0.2-0.3,	23-Mar-2022	12-Apr-2022	20-Apr-2022	1	12-Apr-2022	20-Apr-2022	1	
DS01_0.5-0.6,	DS01 0.8-0.9,				_		-	•	
DS01 1.1-1.2,	DS01 1.5-1.6,								
DS01 1.9-2.0,	DS04 0.0-0.1,								
DS04_0.2-0.3,	DS04_0.5-0.6,								
DS04 0.8-0.9,	DS04 1.1-1.2,								
DS04 1.5-1.6,	DS04 1.9-2.0								
Soil Glass Jar - Unpreserved (ED005)	_								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	12-Apr-2022	19-Apr-2022	✓	12-Apr-2022	19-Apr-2022	✓	
DS07_0.8-0.9,	DS07_1.1-1.2,								
DS07_1.5-1.6,	DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (ED005)									
DS07_0.5-0.6		22-Mar-2022	13-Apr-2022	19-Apr-2022	✓	13-Apr-2022	19-Apr-2022	✓	
Soil Glass Jar - Unpreserved (ED005)					_				
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	12-Apr-2022	20-Apr-2022	✓	12-Apr-2022	20-Apr-2022	✓	
SS03_0.0-0.3,	SS04_0.0-0.3								
ED006: Exchangeable Cations on Alkaline Soils									
Snap Lock Bag (ED006)									
DS04_0.0-0.1,	DS04_0.2-0.3	23-Mar-2022	12-Apr-2022	20-Apr-2022	✓	12-Apr-2022	20-Apr-2022	✓	
Snap Lock Bag (ED006)		00 14 0000	40.40000	00 4 0000		40.40000	00 4 0000		
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	12-Apr-2022	20-Apr-2022	✓	13-Apr-2022	20-Apr-2022	✓	
DS01_0.5-0.6,	DS01_0.8-0.9,								
DS01_1.1-1.2,	DS01_1.5-1.6,								
DS01_1.9-2.0,	DS04_0.5-0.6,								
DS04_0.8-0.9,	DS04_1.1-1.2,								
DS04_1.5-1.6,	DS04_1.9-2.0								
Soil Glass Jar - Unpreserved (ED006)	D007 0 0 0 0	00 May 2000	40.40000	10 Apr 2022		40.40000	10 Apr 2022		
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	12-Apr-2022	19-Apr-2022	✓	12-Apr-2022	19-Apr-2022	✓	
DS07_0.5-0.6									
Soil Glass Jar - Unpreserved (ED006) DS07 0.8-0.9,	DS07 1.1-1.2,	22-Mar-2022	12-Apr-2022	19-Apr-2022	√	13-Apr-2022	19-Apr-2022		
<u> </u>	<u>-</u>	22-IVIGI -2022	12-Ap1-2022	19-Api-2022	~	13-Ap1-2022	19-Api-2022	✓	
DS07_1.5-1.6,	DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (ED006) SS03 0.0-0.3		23-Mar-2022	12-Apr-2022	20-Apr-2022	1	12-Apr-2022	20-Apr-2022	1	
Soil Glass Jar - Unpreserved (ED006)				· r · ·			· · · · ·		
SS01 0.0-0.3,	SS02 0.0-0.3,	23-Mar-2022	12-Apr-2022	20-Apr-2022	1	13-Apr-2022	20-Apr-2022	✓	
SS04 0.0-0.3	,				_		•	, ·	

Page : 8 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED007: Exchangeable Cations								
Snap Lock Bag (ED007)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	12-Apr-2022	20-Apr-2022	✓	12-Apr-2022	20-Apr-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (ED007)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	12-Apr-2022	19-Apr-2022	✓	12-Apr-2022	19-Apr-2022	✓
DS07_0.8-0.9,	DS07_1.1-1.2,							
DS07_1.5-1.6,	DS07_1.9-2.0							
Soil Glass Jar - Unpreserved (ED007)								
DS07_0.5-0.6		22-Mar-2022	13-Apr-2022	19-Apr-2022	√	13-Apr-2022	19-Apr-2022	✓
Soil Glass Jar - Unpreserved (ED007)		00.140000	40.4	00 4 - 0000		40.40000	00 4 0000	
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	12-Apr-2022	20-Apr-2022	✓	12-Apr-2022	20-Apr-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							
ED008: Exchangeable Cations								
Snap Lock Bag (ED008)				00.4.0000				
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	12-Apr-2022	20-Apr-2022	✓	12-Apr-2022	20-Apr-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (ED008)				40. 4 0000			40.40000	
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	12-Apr-2022	19-Apr-2022	✓	12-Apr-2022	19-Apr-2022	✓
DS07_0.8-0.9,	DS07_1.1-1.2,							
DS07_1.5-1.6,	DS07_1.9-2.0							
Soil Glass Jar - Unpreserved (ED008)		22-Mar-2022	13-Apr-2022	19-Apr-2022	,	13-Apr-2022	19-Apr-2022	
DS07_0.5-0.6		22-Iviar-2022	13-Apr-2022	19-Api-2022	√	13-Apr-2022	19-Api-2022	✓
Soil Glass Jar - Unpreserved (ED008) SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	12-Apr-2022	20-Apr-2022	1	12-Apr-2022	20-Apr-2022	1
SS03 0.0-0.3,	SS02_0.0-0.3, SS04_0.0-0.3	20-IVIGI -2022	12-Api-2022	20 / Ipi 2022	•	12-Api-2022	20,101,2022	Y
3303_0.0-0.3,	3304_0.0-0.3							

Page : 9 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding tim
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED040S : Soluble Sulfate by ICPAES								
Snap Lock Bag (ED040S)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	07-Apr-2022	20-Apr-2022	✓	13-Apr-2022	05-May-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (ED040S)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	07-Apr-2022	19-Apr-2022	✓	13-Apr-2022	05-May-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (ED040S)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	07-Apr-2022	20-Apr-2022	✓	13-Apr-2022	05-May-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							
ED045G: Chloride by Discrete Analyser								
Snap Lock Bag (ED045G)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	07-Apr-2022	20-Apr-2022	✓	07-Apr-2022	05-May-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (ED045G)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	07-Apr-2022	19-Apr-2022	✓	07-Apr-2022	05-May-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (ED045G)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	07-Apr-2022	20-Apr-2022	✓	07-Apr-2022	05-May-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							

Page : 10 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

Matrix: SOIL Evaluation: × = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation ED091 : Calcium Chloride Extractable Boron Snap Lock Bag (ED091) 23-Mar-2022 08-Apr-2022 19-Sep-2022 08-Apr-2022 19-Sep-2022 DS01_0.0-0.1, DS01 0.2-0.3, DS01_0.5-0.6, DS01_1.1-1.2, DS01 1.9-2.0, DS04 0.0-0.1, DS04 0.2-0.3, DS04 0.5-0.6, DS04 1.1-1.2, DS04 1.9-2.0 Soil Glass Jar - Unpreserved (ED091) DS07_0.0-0.1, DS07 0.2-0.3, 22-Mar-2022 08-Apr-2022 18-Sep-2022 1 08-Apr-2022 18-Sep-2022 DS07_0.5-0.6, DS07_1.1-1.2, DS07 1.9-2.0 Soil Glass Jar - Unpreserved (ED091) 19-Sep-2022 SS01_0.0-0.3, SS02_0.0-0.3, 23-Mar-2022 08-Apr-2022 08-Apr-2022 19-Sep-2022 SS03 0.0-0.3, SS04_0.0-0.3 **ED092: DTPA Extractable Metals** Snap Lock Bag (ED092) 23-Mar-2022 07-Apr-2022 19-Sep-2022 12-Apr-2022 19-Sep-2022 DS01 0.2-0.3, 1 DS01_0.0-0.1, DS01 0.5-0.6, DS01 1.1-1.2, DS01 1.9-2.0, DS04 0.0-0.1, DS04 0.2-0.3, DS04 0.5-0.6, DS04 1.1-1.2, DS04 1.9-2.0 Soil Glass Jar - Unpreserved (ED092) 22-Mar-2022 07-Apr-2022 18-Sep-2022 12-Apr-2022 18-Sep-2022 DS07_0.0-0.1, DS07_0.2-0.3, 1 DS07 0.5-0.6, DS07 1.1-1.2, DS07_1.9-2.0 Soil Glass Jar - Unpreserved (ED092) 19-Sep-2022 19-Sep-2022 SS01 0.0-0.3, SS02_0.0-0.3, 23-Mar-2022 07-Apr-2022 12-Apr-2022 SS03 0.0-0.3, SS04 0.0-0.3

Page : 11 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL					Evaluation	ı: 🗴 = Holding time	breach ; ✓ = With	in holding tim
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED093S: Soluble Major Cations								
Snap Lock Bag (ED093S)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	07-Apr-2022	19-Sep-2022	✓	13-Apr-2022	19-Sep-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (ED093S)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	07-Apr-2022	18-Sep-2022	✓	13-Apr-2022	18-Sep-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (ED093S)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	07-Apr-2022	19-Sep-2022	✓	13-Apr-2022	19-Sep-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							
EK059G: Nitrite plus Nitrate as N (NOx) by Disc	crete Analyser							
Snap Lock Bag (EK059G)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	07-Apr-2022	20-Apr-2022	✓	07-Apr-2022	09-Apr-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (EK059G)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	07-Apr-2022	19-Apr-2022	✓	07-Apr-2022	09-Apr-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (EK059G)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	07-Apr-2022	20-Apr-2022	✓	07-Apr-2022	09-Apr-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							

Page : 12 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	E	ktraction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK061G: Total Kjeldahl Nitrogen By Discre	ete Analyser							
Snap Lock Bag (EK061G)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	05-Apr-2022	20-Apr-2022	✓	08-Apr-2022	03-May-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_0.8-0.9,	DS04_1.1-1.2,							
DS04_1.5-1.6,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (EK061G)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	05-Apr-2022	19-Apr-2022	✓	08-Apr-2022	03-May-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07_1.1-1.2,	DS07_1.5-1.6,							
DS07 1.9-2.0								
Soil Glass Jar - Unpreserved (EK061G)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	05-Apr-2022	20-Apr-2022	✓	08-Apr-2022	03-May-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							
EK080: Bicarbonate Extractable Phosphore	us (Colwell)							
Snap Lock Bag (EK080)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	08-Apr-2022	19-Sep-2022	✓	20-Apr-2022	19-Sep-2022	✓
DS01_0.5-0.6,	DS01_1.1-1.2,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_1.1-1.2,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (EK080)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	08-Apr-2022	18-Sep-2022	✓	20-Apr-2022	18-Sep-2022	✓
DS07_0.5-0.6,	DS07_1.1-1.2,							
DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (EK080)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	08-Apr-2022	19-Sep-2022	✓	20-Apr-2022	19-Sep-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							

Page : 13 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK081: Bicarbonate Extractable Phosphor	rus (Olsen)							
Snap Lock Bag (EK081)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	13-Apr-2022	19-Sep-2022	✓	19-Apr-2022	19-Sep-2022	✓
DS01_0.5-0.6,	DS01_1.1-1.2,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04_0.2-0.3,	DS04_0.5-0.6,							
DS04_1.1-1.2,	DS04_1.9-2.0							
Soil Glass Jar - Unpreserved (EK081)								
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	13-Apr-2022	18-Sep-2022	✓	19-Apr-2022	18-Sep-2022	✓
DS07_0.5-0.6,	DS07_1.1-1.2,							
DS07_1.9-2.0								
Soil Glass Jar - Unpreserved (EK081)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	13-Apr-2022	19-Sep-2022	✓	19-Apr-2022	19-Sep-2022	✓
SS03_0.0-0.3,	SS04_0.0-0.3							
EP004: Organic Matter								
Snap Lock Bag (EP004)								
DS01_0.0-0.1,	DS01_0.2-0.3,	23-Mar-2022	08-Apr-2022	30-Mar-2022	æ	14-Apr-2022	06-May-2022	✓
DS01_0.5-0.6,	DS01_0.8-0.9,							
DS01_1.1-1.2,	DS01_1.5-1.6,							
DS01_1.9-2.0,	DS04_0.0-0.1,							
DS04 0.2-0.3,	DS04 0.5-0.6,							
DS04 0.8-0.9,	DS04 1.1-1.2,							
DS04 1.5-1.6,	DS04 1.9-2.0							
Soil Glass Jar - Unpreserved (EP004)	_							
DS07_0.0-0.1,	DS07_0.2-0.3,	22-Mar-2022	08-Apr-2022	19-Apr-2022	1	14-Apr-2022	19-Apr-2022	✓
DS07_0.5-0.6,	DS07_0.8-0.9,							
DS07 1.1-1.2,	DS07 1.5-1.6,							
DS07_1.9-2.0	<u>-</u> ,							
Soil Glass Jar - Unpreserved (EP004)								
SS01_0.0-0.3,	SS02_0.0-0.3,	23-Mar-2022	08-Apr-2022	20-Apr-2022	1	14-Apr-2022	20-Apr-2022	✓
SS03 0.0-0.3,	SS04 0.0-0.3							

Page : 14 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

Matrix: SOIL

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

		requency within specification.

				Lvaidatio	ii. Quality oc	or in oquonoy	That within specification, * - Quality Control frequency within specific
Quality Control Sample Type	e Count Rate (%)		Quality Control Specification				
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Bicarbonate Extractable P (Colwell)	EK080	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Bicarbonate Extractable P (Olsen)	EK081	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Calcium Chloride Extractable Boron	ED091	2	19	10.53	10.00	√	NEPM 2013 B3 & ALS QC Standard
Cations - soluble by ICP-AES	ED093S	3	25	12.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride Soluble By Discrete Analyser	ED045G	3	34	8.82	10.00	×	NEPM 2013 B3 & ALS QC Standard
DTPA Extractable Metals	ED092	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations	ED007	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations on Alkaline Soils	ED006	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations with pre-treatment	ED008	1	5	20.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Major Anions - Soluble	ED040S	3	25	12.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	4	35	11.43	10.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	3	34	8.82	10.00	*	NEPM 2013 B3 & ALS QC Standard
Analyser							
Organic Matter	EP004	3	25	12.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
oH (1:5)	EA002	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Soil Particle Density	EA152	0	25	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TKN as N By Discrete Analyser	EK061G	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Bicarbonate Extractable P (Colwell)	EK080	3	19	15.79	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Bicarbonate Extractable P (Olsen)	EK081	3	20	15.00	15.00	1	NEPM 2013 B3 & ALS QC Standard
Calcium Chloride Extractable Boron	ED091	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Cations - soluble by ICP-AES	ED093S	2	25	8.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride Soluble By Discrete Analyser	ED045G	4	34	11.76	10.00	1	NEPM 2013 B3 & ALS QC Standard
DTPA Extractable Metals	ED092	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	2	35	5.71	5.00	1	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations	ED007	1	5	20.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations on Alkaline Soils	ED006	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations with pre-treatment	ED008	1	5	20.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Major Anions - Soluble	ED040S	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	2	34	5.88	5.00	√	NEPM 2013 B3 & ALS QC Standard
Analyser						_	
Organic Matter	EP004	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
oH (1:5)	EA002	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Soil Particle Density	EA152	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TKN as N By Discrete Analyser	EK061G	4	35	11.43	10.00	1	NEPM 2013 B3 & ALS QC Standard

Page : 15 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency i	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type	Quality Control Sample Type		Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Method Blanks (MB)							
Bicarbonate Extractable P (Colwell)	EK080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Bicarbonate Extractable P (Olsen)	EK081	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Calcium Chloride Extractable Boron	ED091	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Cations - soluble by ICP-AES	ED093S	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride Soluble By Discrete Analyser	ED045G	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
DTPA Extractable Metals	ED092	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations	ED007	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations on Alkaline Soils	ED006	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations with pre-treatment	ED008	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Anions - Soluble	ED040S	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Analyser							
Organic Matter	EP004	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TKN as N By Discrete Analyser	EK061G	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Bicarbonate Extractable P (Colwell)	EK080	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Bicarbonate Extractable P (Olsen)	EK081	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Analyser							
Organic Matter	EP004	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TKN as N By Discrete Analyser	EK061G	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 16 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Project : 60651803 5.2

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM Schedule B(3).
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples using a 1:5 soil/water leach. This method is compliant with NEPM Schedule B(3).
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Emerson Aggregate Test	EA058	SOIL	In house: Referenced to AS1289.3.8.1. Testing is performed only on soils with suitable aggregates; sands and gravels are usually unsuitable for this test. The test classifies the behaviour of soil aggregates, when immersed, on their coherence in water.
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3
Soil Particle Density	EA152	SOIL	Soil Particle Density by AS 1289.3.5.1: Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method
Exchange Acidity by 1M Potassium Chloride	* ED005	SOIL	In house: referenced to Rayment and Lyons, method 15G1. This method is unsuitable for near neutral and alkaline soils. NATA accreditation does not cover performance of this service.
Exchangeable Cations on Alkaline Soils	* ED006	SOIL	In house: Referenced to Soil Survey Test Method C5. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with alcoholic ammonium chloride at pH 8.5. They are then guantitated in the final solution by ICPAES and reported as meg/100g of original soil.
Exchangeable Cations	ED007	SOIL	In house: Referenced to Rayment & Lyons Method 15A1. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM Schedule B(3).
Exchangeable Cations with pre-treatment	ED008	SOIL	In house: Referenced to Rayment & Lyons Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM Schedule B(3).
Major Anions - Soluble	ED040S	SOIL	In house: Soluble Anions are determined off a 1:5 soil / water extract by ICPAES.
Chloride Soluble By Discrete Analyser	ED045G	SOIL	In house: Referenced to APHA 4500-Cl- E. The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm. Analysis is performed on a 1:5 soil / water leachate.
Calcium Chloride Extractable Boron	* ED091	SOIL	In house: Referenced to Rayment & Lyons method 12C2. Soil is extracted with hot 0.01M CaCl2 solution at a 1:2 ratio. Extracts can be run on ICP.
DTPA Extractable Metals	* ED092	SOIL	In house: Referenced to Rayment and Lyons 12A1
Cations - soluble by ICP-AES	ED093S	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010 (ICPAES) Water extracts of the soil are analyzed for major cations by ICPAES. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3).

Page : 17 of 17 Work Order : EB2208583

Client : AECOM AUSTRALIA PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser	EK059G	SOIL	In house: Thermo Scientific Method D08727 and NEMI (National Environmental Method Index) Method ID: 9171. This method covers the determination of total oxidised nitrogen (NOx-N) and nitrate (NO3-N) by calculation, Combined oxidised Nitrogen (NO2+NO3) in a water extract is determined by direct colourimetry by Discrete Analyser.
TKN as N By Discrete Analyser	EK061G	SOIL	In house: Referenced to APHA 4500-Norg-D Soil samples are digested using Kjeldahl digestion followed by determination by Discrete Analyser.
Total Nitrogen as N (TKN + NOx) By Discrete Analyser	EK062G	SOIL	In house: Referenced to APHA 4500 Norg/NO3- Total Nitrogen is determined as the sum of TKN and Oxidised Nitrogen, each determined seperately as N.
Bicarbonate Extractable P (Colwell)	EK080	SOIL	In house: Referenced to Rayment & Lyons Method 9B1 Phosphorus is extracted from the soil using 0.5M NaHCO3 at a 1:100 soil:solution ratio and determined by FIA.
Bicarbonate Extractable P (Olsen)	EK081	SOIL	In house: Referenced to Rayment and Lyons 9C1 Phosphorus is extracted from the soil using 0.5M NaHCO3 at a 1:20 soil:solution ratio over 30 minutes and determined by FIA.
Organic Matter	EP004	SOIL	In house: Referenced to AS1289.4.1.1. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Exchangeable Cations Preparation Method (Alkaline Soils)	ED006PR	SOIL	In house: Referenced to Rayment and Lyons method 15C1.
Exchangeable Cations Preparation Method	ED007PR	SOIL	In house: Referenced to Rayment & Lyons method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.
Hot Water CaCl2 Extraction for Boron	ED091PR	SOIL	In house: Referenced to Rayment & Lyons method 12C2. Soil is extracted with hot 0.01M CaCl2 solution at a 1:2 ratio. Extracts can be run on ICP.
DTPA Extraction for Cu, Zn, Mn, Fe (2 hour leach)	ED092PR	SOIL	In house: Referenced to Rayment & Lyons Method 12A1 2 hour end over end tumbler extraction with 0.005M DTPA at a ratio of 1:2. Extracts can be run by ICP for metals.
TKN/TP Digestion	EK061/EK067	SOIL	In house: Referenced to APHA 4500 Norg- D; APHA 4500 P - H. Macro Kjeldahl digestion.
Sample Preparation for Bicarbonate Extractable P (Colwell)	EK080-PR	SOIL	In house: Referenced to Rayment & Lyons Method 9B1 Phosphorus is extracted from the soil using 0.5M NaHCO3 at a 1:100 soil:solution ratio.
Sample Preparation for Bicarbonate Extractable P (Olsen)	EK081-PR	SOIL	In house: Referenced to Rayment and Lyons 9C1 Phosphorus is extracted from the soil using 0.5M NaHCO3 at a 1:20 soil:solution ratio over 30 minutes.
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Organic Matter	EP004-PR	SOIL	In house: Referenced to AS1289.4.1.1. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM Schedule B(3).